作物杂志,2025, 第2期: 54–65 doi: 10.16035/j.issn.1001-7283.2025.02.008

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

桔梗白花和紫花发育过程基因差异表达研究

齐书娅(), 严一字, 金卓, 吴松权()   

  1. 延边大学农学院,133000,吉林延吉
  • 收稿日期:2024-02-05 修回日期:2024-03-05 出版日期:2025-04-15 发布日期:2025-04-16
  • 通讯作者: 吴松权
  • 作者简介:齐书娅,研究方向为长白山药食同源植物资源与利用,E-mail:1152258498@qq.com
  • 基金资助:
    吉林省科技厅重点研发项目“高品质道地药材桔梗的生态种植技术集成”(20220204048YY)

Study on Differential Gene Expression during the Development of White and Purple Flowers of Platycodon grandiflorus

Qi Shuya(), Yan Yizi, Jin Zhuo, Wu Songquan()   

  1. Agricultural College, Yanbian University, Yanji 133000, Jilin, China
  • Received:2024-02-05 Revised:2024-03-05 Online:2025-04-15 Published:2025-04-16
  • Contact: Wu Songquan

摘要:

为挖掘影响桔梗紫花花色形成基因和途径,利用百迈客云平台BMKCloud对桔梗白花和紫花3个时期(花蕾期、转色期、开放期)进行了转录组测序,筛选桔梗花青素代谢相关差异表达基因。筛选到5个KEGG通路与花青素代谢相关。本试验共筛选出11个参与花青素生物合成的候选基因,包括9个关键酶基因(HCT、CHI、DFR、F3′5′H、ANS、3'GT、CCR、NAR、HPPR)和2个糖基酶基因(β-葡萄糖苷酶BoGH3B和UGT79B6),持续表达影响桔梗紫花花色形成。本研究构建了桔梗紫花形成的表达调控通路,筛选出调控桔梗紫花形成的候选基因,为研究桔梗紫花的遗传和分子机制研究提供参考。

关键词: 转录组, 花青素, 桔梗, 花色, 差异表达基因

Abstract:

To explore the genes and pathways influencing the color formation of Platycodon grandiflorus purple flowers, the BMKCloud platform from Biomarker Technologies was used to conduct transcriptome sequencing on both white and purple P.grandiflorus flowers at three stages (bud, color changing, and blooming). The differentially expressed genes related to anthocyanin metabolism in P.grandiflorus were screened. Five KEGG pathways related to anthocyanin metabolism were screened out. A total of 11 candidate genes involved in anthocyanin biosynthesis were screened out, including nine key enzyme genes (HCT, CHI, DFR, F3'5'H, ANS, 3'GT, CCR, NAR, HPPR) and two glycosylase genes (β-glucosidase BoGH3B and UGT79B6), and their continuous expression affects the formation of purple flowers of P.grandiflorus. This research constructed an expression regulation pathway for the formation of P.grandiflorus purple flowers and identified the candidate genes involved in this process, thus providing new insights for the genetic and molecular mechanism research of P.grandiflorus purple flowers.

Key words: Transcriptome, Anthocyanins, Platycodon grandiflorus, Flower color, Differently expressed genes

图1

不同发育时期的桔梗紫花和白花

表1

qRT-PCR引物序列

基因ID Gene ID 正向引物Forward primer (5'-3') 反向引物Reverse primer (5'-3')
Actin CATCCACGAGACCACCTACAA CGAGCCACCAATCCAAACA
TRINITY_DN23720_c0_g2 AATGCTCAATCAGTCCCTG CTAACCGTATTCCCGTCTT
TRINITY_DN2567_c0_g1 TAGTAGCGGCAGCAGAAGC TTCATCAACAACGGCATCA
TRINITY_DN967_c1_g1 AGTATAGGTTATGCCTGTGG TTATGGGATTGATGCTCTT
TRINITY_DN2406_c1_g1 GTTTGCCAATTATGGACTC AACCCAATTCGTTCTGTTA
TRINITY_DN3035_c0_g1 CCAAGAGTGAGGTCTGGCTGAG GGGCGGTGACGGAGAAGTA
TRINITY_DN37472c0_g1 CATTGGCTCGTGGTTAGTC AAGTTGGTGTCAGCTTTCG
TRINITY_DN5772_c0_g1 GGAATCGGAATGGTTGAGT TTGGCTAGGCAGTGTAAGC
TRINITY_DN6749_c0_g1 ATGTGGAGACGGAACGACG TGACAGCCCTGGGAAAGAA
TRINITY_DN8143_c2_g1 TGCCCAATCCAATTATACCA ACCGACGAAGTTGCTGACTA
TRINITY_DN8697_c0_g1 TGAGCCTTCAGTTTCTTCC GGGTGCCTTTGATTGTTAG
TRINITY_DN3637_c0_g1 TTCGGCAACAAGTATGAAA TCCAGTCCTCCTCTTAGCA

表2

测序数据分析汇总表

样本ID Sample ID 读长总数Read sum 碱基总数Base sum GC碱基含量GC base content (%) Q20 (%) Q30 (%)
BA1 22673594 6791955690 43.69 99.64 97.86
BA2 23522001 7046338862 44.34 99.62 97.75
BA3 20665494 6190548036 43.94 99.68 98.12
BB1 19419289 5817024270 43.96 99.64 97.86
BB2 21363691 6399577508 44.15 99.62 97.73
BB3 20202020 6051810874 44.07 99.66 98.03
BC1 21679804 6492693228 42.67 99.60 97.60
BC2 22115453 6624717198 43.30 99.63 97.80
BC3 25825530 7734409312 42.96 99.65 97.95
ZA1 23120475 6924725334 43.28 99.68 98.17
ZA2 24396786 7306725610 43.76 99.69 98.22
ZA3 24180417 7241221932 43.22 99.66 98.03
ZB1 24876074 7451447804 43.91 99.66 98.02
ZB2 21070788 6312223716 44.02 99.65 97.93
ZB3 22153286 6636874790 44.23 99.61 97.71
ZC1 22804663 6831635192 43.71 99.66 97.97
ZC2 22750568 6815684020 43.69 99.61 97.64
ZC3 25896801 7757837316 43.87 99.69 98.20

表3

组装结果统计

所有组合转录本长度
All combination transcripts length (bp)
总数
Total number
百分比
Percentage (%)
100~300 25 306 12.54
300~500 31 668 15.69
500~1000 42 152 20.89
1000~2000 47 928 23.75
>2000 54 755 27.13
总数Total number 201 809
总长度Total length 303 409 855
N50长度N50 length 2452
平均长度Mean length 1503

图2

样本的相关性分析

图3

差异表达基因数目统计 (a) 各比较组差异表达基因数目统计柱状图;(b) 各比较组差异表达基因韦恩图。

图4

差异表达基因火山图

图5

各时期GO富集柱状图

图6

各时期DEGs的KEGG浓缩图

表4

各时期比较组花色关键结构基因差异表达

代谢通路
Pathway ID
通路名称
Name of pathway
基因ID
Gene ID
基因名称
Gene name
详细描述
Detailed description
表达
Expression
ko00940 苯丙酸代谢 TRINITY_DN23720_c0_g2 HCT 羟基肉桂酰辅酶A莽草酸酯 上调
TRINITY_DN2567_c0_g1 CCR 肉桂酰辅酶A还原酶 上调
ko00941 类黄酮生物合成 TRINITY_DN967_c1_g1 β-葡萄糖苷酶BoGH3B β-葡萄糖苷酶BoGH3B 上调
TRINITY_DN2406_c1_g1 CHI 查尔酮―黄酮异构酶 上调
TRINITY_DN3035_c0_g1 NAR 柚皮素,2-氧代戊二酸3-双加氧酶 上调
TRINITY_DN37472_c0_g1 DFR 二氢黄酮醇4-还原酶 上调
TRINITY_DN5772_c0_g1 F3′5′H 类黄酮-3',5'-羟化酶 上调
TRINITY_DN6749_c0_g1 ANS 花青素合酶 上调
ko00360 苯丙氨酸代谢 TRINITY_DN8143_c2_g1 HPPR 羟苯基丙酮酸还原酶 下调
ko00942 花青素生物合成 TRINITY_DN8697_c0_g1 3'GT 花青素3-O-葡萄糖基转移酶 上调
TRINITY_DN3637_c0_g1 UGT79B6 UDP-糖基转移酶79B6 下调

图7

关键基因表达量热图

图8

差异基因实时荧光定量结果 “*”、“**”和“***”分别代表同一比较组中白花和紫花在P < 0.05、P < 0.01和P < 0.001水平上差异显著。

[1] 中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 2016.
[2] Wu S J, Meng Y. Comprehensive development and utilization of wild Platycodon. Northern Horticulture, 2010,24:219-221.
[3] Yang F F, Guo X, Hu B X, et al. Reserach progress in the use diversity and directive breeding of Platycodon grandiflorum. Progress in Modern Biomedicine, 2015, 15(14):2751-2756.
[4] Chen C B, Wu J Y, Hua Q Z, et al. Identification of reliable reference genes for quantitative real-time PCR normalization in pitaya. Plant Methods, 2019, 15(1):1-12.
[5] Chen L, Li L N, Dai Y P, et al. De novo transcriptome analysis of Osmanthus serrulatus Rehd. flowers and leaves by Illumina sequencing. Biochemical Systematics and Ecology, 2015,61:531-540.
[6] Xia Y, Chen W W, Xiang W B, et al. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petal during colour-transition. BMC Plant Biology, 2021,21:98.
[7] Dhandapani S, Jin J J, Sridhar V, et al. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds. BMC Genomics, 2017, 18(1):463.
[8] 贾岩, 张福生, 肖淑贤, 等. 款冬花不同发育阶段的代谢组学和比较转录组学分析. 中国生物化学与分子生物学报, 2017, 33(6):615-623.
[9] 李国清, 毕研文, 陈宝芳, 等. 中草药桔梗人工栽培研究进展. 农学学报, 2016, 6(7):55-59.
[10] 戴思兰, 洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种. 中国农业科学, 2016, 49(3):529-542.
[11] 李淑娴, 侯静, 冒燕, 等. 决定植物花色的分子机制与遗传调控. 西南林业大学学报, 2012, 32(6):92-97.
[12] 王江昱, 田淑婷, 张涵, 等. 单子叶观赏植物花青素苷呈色机制研究进展. 扬州大学学报(农业与生命科学版), 2022, 43 (5):101-114.
[13] Hichri I, Barrieu F, Bogs J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62(8):465-2483.
[14] Timothy A, Edwina C. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell, 1995, 7(7):1071-1083.
[15] 刘淑华, 臧丹丹, 孙燕, 等. 青素生物合成途径及关键酶研究进展. 土壤与作物, 2022, 11(3):336-346.
[16] Saigo T, Wang T, Watanabe M, et al. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Current Opinion in Plant Biology, 2020,55:93-99.
[17] 赵历强, 单春苗, 张声祥, 等. 基于转录组测序的细风轮花青素合成途径及关键酶基因分析. 植物研究, 2020, 40(6):886-896.
[18] 王冲, 宋阳. 基于转录组数据解析大花君子兰花瓣花青素代谢差异. 分子植物育种, 2023, 21(4):1093-1102.
[19] 陈家龙, 侯蓉苗, 朱建军, 等. 木槿两个花色品种的花瓣转录组测序分析. 分子植物育种, 2022, 20(8):2507-2516.
[20] Wang W J, Liu G S, Niu H X, et al. The F-box protein COI1 functions up stream of MYB305 to regulate primary carbohydrate metabolism in tobacco (Nicotiana tabacum L. cv. TN90). Journal of Experimental Botany, 2014, 65(8):2147-2160.
[21] 韩科厅, 胡可, 戴思兰. 观赏植物花色的分子设计. 分子植物育种, 2008, 6(1):16-24.
[22] 彭玉帅, 王如峰, 张陆军. 花青素生物合成的关键酶及其调控因子. 中草药, 2014, 5(1):131-136.
[23] Huai G L, Qi P, Yang H J, et al. Characteristics of α-Gal epitope, anti-Gal antibody, α-1, 3 galactosyltrans ferase and its clinical exploitation(Review). International Journal of Molecular Medicine, 2016, 37(1):11-20.
[24] 周琳, 邹红竹, 韩璐璐, 等. 糖基转移酶在花瓣色泽形成中的作用研究进展. 园艺学报, 2022, 49(3):687-700.
[25] Fukuchi-Mizutani M, Okuhara H, Fukui Y, et al. Biochemical and molecular characterization of a novel UDP-glucose: anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis from gentian. Plant Physiology, 2003,32:1652-1663.
[26] Nakatsuka T, Sato K, Takahashi H, et al. Cloning and characterization of the UDP-glucose: anthocyanin 5-O- glucosyltransferase gene from blue-flowered gentian. Journal of Experimental Botany, 2008, 59(6):1241-1252.
[27] Tanaka Y, Brugliera F. Flower colour and cytochromes P450. Philosophical Transactions of the Royal Society B, 2013, 368 (1612):20120432.
[28] Noda N, Yoshioka S, Kishimoto S, et al. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Science Advances, 2017,3:e1602785.
[29] Noda N. Recent advances in the research and development of blue flowers. Breeding Science, 2018, 68(1):79-87.
[30] Lulin Ma, Wenjie Jia, Qing Duan, et al. Heterologous expression of Platycodon grandiflorus PgF3'5'H modifies flower color pigmentation in tobacco. Genes, 2023, 14(10):1920.
[31] Giulietti A, Overbergh L, Valckx D, et al. An overview of Real- time quantitative PCR: applications to quantify cytokine gene expression. Methods, 2001, 25(4):386-401.
[32] Czechowski T, Stitt M, Altmann T, et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 2005, 139(1):5-17.
[33] Thellin O, Zorzi W, Lakaye B, et al. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology, 1999,75:291-295.
[34] 王彦杰, 陈叶清, 薛泽云, 等. 荷花花瓣着色过程实时荧光定量PCR内参基因的筛选及验证. 南京农业大学学报, 2017, 40(3):408-415.
[35] 李健. 芍药实时定量PCR内参基因的筛选和验证. 分子植物育种, 2017, 15(7):2544-2549.
[36] Vekemans D, Viaene T, Caris P, et al. Transference of function shapes organ identity in the dove tree inflorescence. New Phytologist, 2012, 193(1):216-228.
[37] 齐香玉, 陈双双, 冯景, 等. 茉莉花实时荧光定量PCR内参基因的筛选与验证. 华北农学报, 2020, 35(6):22-30.
[1] 江慧, 钟巧芳, 殷富有, 李金璐, 刘丽, 张云, 王波, 蒋聪, 程在全, 张慧, 肖素勤. 药用野生稻种质资源和多组学研究进展[J]. 作物杂志, 2025, (2): 1–8
[2] 孙明茂, 刘丽霞, 孙虎, 崔迪. 水稻重组自交系群体花色苷及重要农艺性状分析[J]. 作物杂志, 2024, (6): 26–38
[3] 宋慧, 王涛, 邢璐, 刘俊芳, 张扬, 刘金荣, 陈红旗, 冯佰利. 不同谷子品种喷施咪唑啉酮除草剂后的转录组分析[J]. 作物杂志, 2024, (3): 13–22
[4] 卿晨, 刘正学, 李彦杰. 转录组测序分析干旱胁迫下复合微生物菌肥对玉米幼苗抗旱性的影响[J]. 作物杂志, 2024, (3): 32–39
[5] 窦维泽, 姜雯, 冯艺川, 金卓, 全雪丽, 吴松权. 过氧化氢诱导膜荚黄芪不定根毛蕊异黄酮葡萄糖苷积累的转录组分析[J]. 作物杂志, 2024, (1): 48–56
[6] 刘松涛, 田再民, 刘子刚, 高志佳, 张静, 贺东刚, 黄智鸿, 兰鑫. 基于转录组测序揭示玉米抗倒伏相关基因和代谢通路[J]. 作物杂志, 2023, (4): 31–37
[7] 闻丹妮, 鲍聆然, 刘蒙蒙, 沈波. OsWD40过表达水稻根系响应盐胁迫的转录组分析[J]. 作物杂志, 2022, (6): 42–53
[8] 邹勇,黄科,姜玉松,刘奕清. 白姜转录组中的SSR位点信息分析[J]. 作物杂志, 2016, (3): 171–174
[9] 李先平, 包丽仙, 李山云, 等. 彩色马铃薯块茎色素研究进展[J]. 作物杂志, 2009, (1): 4–8
[10] 孙荣琴, 郭华春. 七个紫甘薯品种块根花色苷含量的比较[J]. 作物杂志, 2008, (6): 56–59
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!