作物杂志,2024, 第1期: 193–203 doi: 10.16035/j.issn.1001-7283.2024.01.026

所属专题: 水稻专题

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

苏打盐碱胁迫对水稻光合特性及产量的影响

王晓蕾(), 张云鹤, 牟金猛, 高大鹏, 耿艳秋, 曹译文, 卢芬, 关政闻, 邵玺文(), 郭丽颖()   

  1. 吉林农业大学,130118,吉林长春
  • 收稿日期:2022-10-03 修回日期:2023-10-12 出版日期:2024-02-15 发布日期:2024-02-20
  • 通讯作者: 邵玺文,研究方向为水稻高产高效栽培技术与理论,E-mail:shaoxiwen@126.com; 郭丽颖,研究方向为水稻高产高效栽培技术与理论,E-mail:guoliying0621@163.com
  • 作者简介:王晓蕾,研究方向为盐碱地水稻高产高效栽培技术与理论,E-mail:17843102041@163.com
  • 基金资助:
    吉林省重点科技攻关项目(20210202008NC);吉林省重点科技攻关项目(20210509032RQ)

Effects of Soda and Saline-Alkali Stress on Photosynthetic Characteristics and Yield of Rice

Wang Xiaolei(), Zhang Yunhe, Mu Jinmeng, Gao Dapeng, Geng Yanqiu, Cao Yiwen, Lu Fen, Guan Zhengwen, Shao Xiwen(), Guo Liying()   

  1. Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2022-10-03 Revised:2023-10-12 Online:2024-02-15 Published:2024-02-20
  • Contact: Shao Xiwen,Guo Liying

摘要:

以水稻品种长白9和吉农大667为供试材料,采用盆栽法,设置普通黑土(CK)、轻度(LS)、中度(MS)和重度盐碱(SS)4个处理,测定水稻的干物质、叶面积、产量、叶片叶绿素含量、气体交换参数以及叶绿素荧光参数等指标,探究不同程度苏打盐碱胁迫下水稻光合生理的响应机制。结果表明,随着盐碱程度的加剧,水稻叶面积、叶绿素含量、光合气体交换参数中净光合速率(Pn)、气孔导度(Gs)、干物质和产量均显著下降,胞间CO2浓度(Ci)显著上升。叶绿素荧光动力学曲线中K点的WK和J点的VJ以及QA初始还原速度(Mo)均显著上升,水稻叶片性能指数(PIABS)显著降低,量子产额与效率(φPoφRoψEo)随盐碱程度的加剧呈下降趋势,热耗散比率(φDo)呈上升趋势。与CK相比,苏打盐碱胁迫下长白9品种2年的产量平均下降了16.85%~ 48.85%,吉农大667下降了17.00%~53.10%;水稻的产量构成中结实率、有效穗数和穗粒数等均显著下降。

关键词: 水稻, 苏打盐碱胁迫, 光合作用, 光系统Ⅱ, 叶绿素荧光

Abstract:

Rice varieties Changbai 9 and Jinongda 667 were used as the test materials, and four treatments of black soil (CK), light saline (LS), moderate saline (MS) and severe saline (SS) were set up by potting method. The dry matter, leaf area, yield, leaf chlorophyll content, gas exchange parameters and chlorophyll fluorescence parameters of rice were measured to investigate the response mechanisms of photosynthetic physiology of rice under different levels of soda salinity stress. The results showed that rice leaf area, chlorophyll content, net photosynthetic rate (Pn) and stomatal conductance (Gs), dry matter and yield in photosynthetic gas exchange parameters decreased significantly; and intercellular CO2 concentration (Ci) increased significantly with increasing salinity. Chlorophyll fluorescence kinetic curves of WK at point K and VJ at point J, and initial reduction rate of QA (Mo) were significantly increased, performance index of rice leaves (PIABS) was significantly decreased, quantum yield and efficiency (φPo, φRo, ψEo) showed a decreasing trend with the increasing salinity, and heat dissipation ratio (φDo) showed an increasing trend. Compared with CK, the yield of Changbai 9 under soda salinity stress decreased on average by 16.85% to 48.85% in two years, and by 17.00% to 53.10% in Jinongda 667. The yield components of rice were significantly reduced in seed-setting rate, effective panicle number and grains number per panicle.

Key words: Rice, Soda and saline-alkali stress, Photosynthesis, Photosystem II, Chlorophyll fluorescence

图1

不同苏打盐碱胁迫下水稻干物质积累量的动态变化 BS:孕穗期,HS:抽穗期,FS:灌浆期,PMS:生理成熟期,FMS:完熟期。不同小写字母表示差异显著(P < 0.05)。下同。

表1

苏打盐碱胁迫对水稻产量及其构成因素的影响

年份
Year
品种
Variety
处理
Treatment
有效穗数(个/穴)
Effective panicle
number (piece/hill)
穗粒数
Grains number
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
产量(g/盆)
Yield (g/pot)
2020 长白9 CK 18.33±1.03a 76.75±12.49a 93.62±1.43a 28.19±3.83a 109.19±5.32a
LS 16.83±1.72ab 71.93±3.50ab 91.16±1.04ab 28.56±1.96a 93.98±4.73b
MS 15.33±1.03b 62.41±8.48bc 88.03±3.44b 28.43±2.62a 71.46±10.28c
SS 12.50±1.64c 61.19±4.86c 84.20±3.96c 27.95±2.16a 53.48±4.99d
吉农大667 CK 16.00±1.41a 117.07±5.17a 89.89±1.70a 21.87±1.15a 110.01±5.78a
LS 15.00±1.41a 109.48±7.26ab 86.12±2.38ab 22.40±0.52a 94.70±7.31b
MS 11.50±1.05b 106.87±7.57b 84.00±4.32bc 22.35±1.80a 68.72±4.98c
SS 9.17±0.75c 103.88±5.59b 79.87±7.61c 22.17±1.79a 50.24±4.73d
2021 长白9 CK 19.00±1.67a 78.79±3.78a 94.12±0.43a 27.66±0.46a 116.57±6.75a
LS 18.50±1.38a 66.41±3.32b 93.95±1.16a 27.11±1.70a 93.49±4.15b
MS 16.67±1.03b 62.40±4.23bc 91.28±1.84a 26.71±0.71a 75.85±3.94c
SS 14.83±1.72c 61.02±2.00c 83.02±6.37b 27.73±1.50a 62.08±5.66d
吉农大667 CK 17.50±1.38a 121.99±7.14a 88.56±5.38a 21.79±0.27a 123.02±6.44a
LS 15.67±1.21b 116.05±7.34ab 82.49±2.74b 21.95±1.10a 98.60±9.23b
MS 12.17±0.75c 109.27±4.69bc 81.74±2.76b 22.20±0.73a 72.19±3.34c
SS 10.67±1.37d 103.50±7.66c 79.07±3.72b 22.75±1.17a 59.17±5.74d

图2

苏打盐碱胁迫下水稻叶面积的动态变化

表2

苏打盐碱胁迫对水稻叶片叶绿素及气体交换参数的影响(长白9)

年份
Year
时期
Stage
处理
Treatment
叶绿素含量Chlorophyll content (mg/g) 叶绿素a/b
Chl a/b
Pn
[μmol/(m2·s)]
Gs
[μmol/(m2·s)]
Ci
(μL/L)
叶绿素a Chl a 叶绿素b Chl b
2020 孕穗期 CK 1.05a 0.18a 5.78a 22.08a 1068.63a 316.61c
LS 0.95ab 0.16ab 6.01ab 20.18b 1045.28a 332.40b
MS 0.90b 0.12b 7.34b 15.45c 996.52a 338.85a
SS 0.82b 0.08c 10.42b 10.81d 952.12a 343.44a
抽穗期 CK 2.52a 0.24a 10.59b 36.11a 1495.16a 303.55c
LS 2.38a 0.21ab 11.28ab 26.49b 1242.82b 307.40bc
MS 1.80b 0.15bc 12.28a 24.00b 1069.34b 310.98b
SS 1.48c 0.12c 12.09a 18.94c 1025.03b 317.62a
灌浆期 CK 1.36a 0.21a 6.42a 17.63a 950.50a 329.13c
LS 1.23b 0.18a 6.77a 15.36ab 898.91ab 335.33bc
MS 1.05c 0.15b 7.16a 12.95bc 795.20b 339.79ab
SS 0.91d 0.12c 7.28a 9.09c 675.73c 346.49a
生理成熟期 CK 0.37a 0.10a 3.62a 4.22a 209.71a 352.33c
LS 0.37a 0.08b 4.51ab 3.48a 178.06b 358.31bc
MS 0.31a 0.05c 6.74ab 1.99b 156.75b 366.47ab
SS 0.21b 0.03d 7.71b 0.90c 118.92c 376.23a
2021 孕穗期 CK 1.73a 0.32a 5.78b 28.12a 1168.10a 304.33c
LS 1.49b 0.27b 6.48b 23.10b 1056.73ab 311.41bc
MS 1.43c 0.26b 7.39ab 20.65c 994.57bc 316.21ab
SS 1.37d 0.22c 10.70a 15.99d 864.05c 323.60a
抽穗期 CK 2.86a 0.42a 10.66b 35.88a 1020.86a 313.89d
LS 2.74ab 0.40ab 12.23a 29.73b 1483.40a 292.40c
MS 2.46b 0.33b 12.41a 24.14c 1443.54b 298.17b
SS 1.98c 0.25c 12.45a 21.71d 1141.48b 305.70a
灌浆期 CK 1.63a 0.23a 6.43a 18.87a 1063.61a 313.53b
LS 1.59a 0.22a 6.78a 14.80b 1283.01a 302.45ab
MS 1.45b 0.18b 7.25a 17.48b 924.08a 331.73a
SS 1.29c 0.15b 7.30a 14.80c 903.63a 337.04a
生理成熟期 CK 0.43a 0.06a 3.67b 12.70a 832.85a 342.35b
LS 0.36b 0.04a 4.52ab 9.76b 733.04b 346.11ab
MS 0.28c 0.03b 6.75ab 13.68b 848.40c 339.30a
SS 0.13d 0.02b 8.97a 3.60b 181.20c 341.76a

表3

苏打盐碱胁迫对水稻叶片叶绿素及气体交换参数的影响(吉农大667)

年份
Year
时期
Stage
处理
Treatment
叶绿素含量Chlorophyll content (mg/g) 叶绿素a/b
Chl a/b
Pn
[μmol/(m2·s)]
Gs
[μmol/(m2·s)]
Ci
(μL/L)
叶绿素a Chl a 叶绿素b Chl b
2020 孕穗期 CK 1.28a 0.18a 7.14b 28.98a 1103.65a 315.70c
LS 1.12b 0.14ab 7.76b 26.39b 1005.60a 322.14c
MS 1.04c 0.12bc 8.94ab 21.59c 954.26a 332.24b
SS 0.96d 0.10c 9.70a 14.91d 693.86b 340.28a
抽穗期 CK 2.51a 0.25a 10.10b 37.97a 1485.48a 290.68c
LS 2.39a 0.22a 10.70b 27.83b 1208.66b 302.54b
MS 1.91b 0.18b 10.70b 22.18c 1060.08bc 308.48b
SS 1.46c 0.12c 12.40a 21.80c 908.56c 333.22a
灌浆期 CK 1.33a 0.27a 4.91b 18.13a 928.69a 314.81b
LS 1.25a 0.24a 5.15b 13.97b 674.51b 318.06b
MS 1.05b 0.16b 6.70ab 11.81b 641.73b 337.50a
SS 0.91b 0.11b 7.79a 8.85c 539.54c 346.47a
生理成熟期 CK 0.53a 0.09a 5.85b 3.53a 150.99a 353.89b
LS 0.37b 0.06b 6.58ab 3.21a 124.4ab 354.85b
MS 0.33b 0.05b 6.69ab 1.94b 102.04b 381.79a
SS 0.21c 0.02c 8.77b 1.03c 99.46b 392.16a
2021 孕穗期 CK 1.60a 0.28a 5.81b 28.69a 1108.81a 300.56c
LS 1.48b 0.25ab 5.94b 25.58b 1032.43a 304.56bc
MS 1.38c 0.21bc 6.53ab 22.47c 1015.87a 313.37ab
SS 1.33c 0.17c 7.71a 17.17d 804.05b 320.54a
抽穗期 CK 2.67a 0.50a 5.35b 35.20a 1517.55a 286.38d
LS 2.47b 0.45ab 5.54b 28.87b 1331.54a 295.60c
MS 2.00c 0.35b 5.64b 22.41c 1055.36b 302.42b
SS 1.85d 0.24c 7.73a 18.49d 915.88b 311.68a
灌浆期 CK 1.48a 0.19a 7.98b 17.03a 793.77a 325.52d
LS 1.08b 0.09b 11.40ab 14.21b 732.04a 332.50c
MS 0.97c 0.09b 10.30ab 11.10c 599.33b 340.06b
SS 0.93c 0.07b 14.04a 9.00d 561.81b 345.35a
生理成熟期 CK 0.44a 0.07a 6.47a 3.59a 129.63a 332.53c
LS 0.32b 0.06ab 5.30a 2.63ab 109.88a 341.51b
MS 0.31b 0.06ab 5.49a 1.62bc 99.89a 346.74ab
SS 0.30b 0.05b 6.11a 0.81c 90.71a 354.34a

图3

苏打盐碱胁迫对水稻叶片OJIP标准化曲线的影响(2021)

图4

苏打盐碱胁迫对水稻叶片瞬态荧光初始斜率(Mo)的影响(2021)

图5

苏打盐碱胁迫对水稻供/受体侧性能指数的影响(2021)

图6

苏打盐碱胁迫对水稻能量分配比率的影响(2021)

图7

苏打盐碱胁迫对水稻叶片PIABS的影响(2021)

[1] Zhao W, Zhou Q, Tian Z Z, et al. Apply biochar to ameliorate soda saline-alkali land,improve soil function and increase corn nutrient availability in the Songnen Plain. Science of the Total Environment, 2020, 722:137428.
doi: 10.1016/j.scitotenv.2020.137428
[2] Guo J X, Lu X Y, Tao Y F. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress. Frontiers in Plant Science, 2022, 13:871387.
doi: 10.3389/fpls.2022.871387
[3] 刘淼, 梁正伟. 低氮高密增微肥对苏打盐碱地水稻产量和氮肥利用率的影响. 土壤与作物, 2021, 10(3):245-255.
[4] Singh D P, Sarkar R K. Distinction and characterisation of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. Functional Plant Biology, 2014, 41(7):727-736.
doi: 10.1071/FP13229 pmid: 32481027
[5] 邵玺文, 冉成, 金峰. 松嫩平原苏打盐碱地水稻栽培技术研究进展与展望. 吉林农业大学学报, 2018, 40(4):379-382.
[6] 杨娅坤, 赵飞, 刘建. 盐碱胁迫对水稻的影响及其相关机制的研究进展. 分子植物育种, 2022, 20(15):5150-5157.
[7] 黄伟东, 杨克军. 锌对玉米光合特性及抗氧化体系的影响. 中国糖料, 2020, 42(1):27-32.
[8] Yu J J, Chen S X, Zhao Q, et al. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Journal of Proteome Research, 2011, 10(9):3852-3870.
doi: 10.1021/pr101102p
[9] Shi C C, Yang F, Liu Z H, et al. Uniform water potential induced by salt, alkali, and drought stresses has different impacts on the seedling of Hordeum jubatum: from growth, photosynthesis, and chlorophyll fluorescence. Frontiers in Plant Science, 2021, 12:733236.
doi: 10.3389/fpls.2021.733236
[10] Kalajli M, Govindjee, Bosa K. et al. Effects of salt stress on Photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 2011, 73:64-72.
doi: 10.1016/j.envexpbot.2010.10.009
[11] 孙璐, 周宇飞, 李丰先. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012, 45(16):3265-3272.
doi: 10.3864/j.issn.0578-1752.2012.16.005
[12] 鲁倩君, 陈丽靓, 马媛媛. 盐碱胁迫对不同葡萄砧木光合及叶绿素荧光特性的影响. 果树学报, 2022, 39(5):773-783.
[13] Sun J, Xie D W, Zhang E Y. QTL mapping of photosynthetic- related traits in rice under salt and alkali stresses. Euphytica, 2019, 215(9):147.
doi: 10.1007/s10681-019-2470-x
[14] 杨洋. 不同程度复合盐碱胁迫对油菜苗期生理生化特性的影响. 石河子:石河子大学, 2020.
[15] 姚晓云, 蓝海军, 邓伟. 水稻淡白叶突变体的叶绿素含量测定及农艺性状比较分析. 江西农业学报, 2020, 32(12):12-15.
[16] 魏晓东, 张亚东, 宋雪梅. 超级稻品种南粳5718高产的光合生理特性研究. 作物学报, 2022, 48(11):2879-2890.
doi: 10.3724/SP.J.1006.2022.12078
[17] 李耕, 张善平, 刘鹏. 镉对玉米叶片光系统活性的影响. 中国农业科学, 2011, 44(15):3118-3126.
doi: 10.3864/j.issn.0578-1752.2011.15.006
[18] 董贞芬. 低温胁迫下番茄幼苗叶绿素荧光成像的分析及研究. 沈阳:沈阳农业大学, 2019.
[19] Salim A M, Noreen S, Mahmood S, et al. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. Journal of King Saud University- Science, 2021, 33(1):101239.
doi: 10.1016/j.jksus.2020.101239
[20] 方怡然, 薛立. 盐胁迫对植物叶绿素荧光影响的研究进展. 生态科学, 2019, 38(3):225-234.
[21] 杜琪, 王宁, 赵新华. 低钾胁迫对玉米苗期光合特性和光系统Ⅱ性能的影响. 核农学报, 2019, 33(3):592-599.
doi: 10.11869/j.issn.100-8551.2019.03.0592
[22] 周黄磊, 黄升谋. 库源关系对水稻叶绿素含量及叶绿素a/b值的影响. 绿色科技, 2017(24):147-149.
[23] 杨利云. 不同光质对烟草生长发育、光合特性及多酚代谢的影响. 昆明:云南师范大学, 2014.
[24] 刘建新, 王金成, 王瑞娟. 盐、碱胁迫对燕麦幼苗光合作用的影响. 干旱地区农业研究, 2015, 33(6):155-160.
[25] Liang X L, Fang S M, Ji W B, et al. The positive effects of silicon on rice seedlings under saline-alkali mixed stress. Communications in Soil Science and Plant Analysis, 2015, 46 (17):2127-2138.
doi: 10.1080/00103624.2015.1059848
[26] 赵海新. 碱胁迫对水稻叶绿素及叶片脯氨酸和可溶性糖含量的影响. 作物杂志, 2020(1):98-102.
[27] 杨婷, 谢志霞, 喻琼. 局部根系盐胁迫对冬小麦生长和光合特征的影响. 中国生态农业学报, 2014, 22(9):1074-1078.
[28] Ni M, Ni M, Chao H, et al. Strigolactones improve plant growth,photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Frontiers in Plant Science, 2017, 8:167.
[29] Jiang D, Lu B, Liu L B, et al. Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs. BMC Plant Biology, 2021, 21(1):331.
doi: 10.1186/s12870-021-03082-7 pmid: 34246235
[30] Zhao C, Niu J, Hafiz A K.Graphene enhances photosynthesis and the antioxidative defense system and alleviates salinity and alkalinity stresses in alfalfa (Medicago sativa L.) by regulating gene expression. Environmental Science, 2021, 8(9):2731-2748.
[31] 王鑫. 盐胁迫下高粱新生叶片结构和光合特性的系统调控研究. 泰安:山东农业大学, 2010.
[32] 孙文君, 江晓慧, 付媛媛, 等. 盐分胁迫对棉花幼苗叶片叶绿素荧光参数的影响. 灌溉排水学报, 2021, 40(7):23-28.
[33] 赵伟, 甄天悦, 张子山, 等. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量. 作物学报, 2020, 46(2):249-258.
[34] 李鹏民, 高辉远, Reto J S. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6):559-566.
[35] 原佳乐, 马超, 冯雅岚. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应. 植物生理学报, 2018, 54 (6):1119-1129.
[36] 李磊, 李向义, 林丽莎. 两种生境条件下6种牧草叶绿素含量及荧光参数的比较. 植物生态学报, 2011, 35(6):672-680.
doi: 10.3724/SP.J.1258.2011.00672
[37] Gao D P, Ran C, Zhang Y H, et al. Effect of different concentrations of foliar iron fertilizer on chlorophyll fluorescence characteristics of iron-deficient rice seedlings under saline sodic conditions. Plant Physiology and Biochemistry, 2022, 185:115-122.
[38] 任廷虎, 李宗尧, 杜斌. 有机肥施用及合理密植提高黄淮海地区夏大豆光系统性能与籽粒产量. 植物营养与肥料学报, 2021, 27(8):1361-1375.
[39] Metha P, Jajoo A, Mathur S, et al. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiology and Biochemistry, 2010, 48(1):16-20.
doi: 10.1016/j.plaphy.2009.10.006 pmid: 19932973
[40] 修妤, 梁晓艳, 石瑞常. 混合盐碱胁迫对藜麦苗期植株及根系生长特征的影响. 江苏农业科学, 2020, 48(4):89-94.
[41] Shivani S, Kaur N, Kumar P. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice. Analytical Biochemistry, 2018, 550:99-108.
doi: S0003-2697(18)30198-2 pmid: 29704477
[42] 周婵婵, 王术, 黄元财. 不同水稻品种产量和品质对盐碱胁迫的响应. 种子, 2017, 36(11):29-33.
[1] 季平, 刘金龙, 柳浩, 匡佳丽, 叶世河, 龙莎, 杨洪涛, 彭勃, 徐晨, 刘晓龙. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J]. 作物杂志, 2024, (1): 117–125
[2] 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展[J]. 作物杂志, 2024, (1): 8–15
[3] 谢昊, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 杨建昌, 顾骏飞. 不同栽培措施下水稻基肥氮素利用率的15N示踪分析[J]. 作物杂志, 2024, (1): 90–96
[4] 陈锦平, 潘丽萍, 邢颖, 廖青, 刘永贤, 车江旅. 外源茉莉酸对小白菜耐硒性及硒积累的作用研究[J]. 作物杂志, 2023, (6): 160–166
[5] 高作利, 姜帅臣, 刘雨佳, 徐智慧, 刘海峰. 适合延边地区种植的彩色水稻品种筛选[J]. 作物杂志, 2023, (6): 62–68
[6] 刘艳, 曲航, 邢月华, 王晓辉, 宫亮. 新型氮肥对水稻生长、氮肥利用率和经济效益的影响[J]. 作物杂志, 2023, (5): 110–116
[7] 胡锐, 胡香玉, 傅友强, 叶群欢, 潘俊峰, 梁开明, 李妹娟, 刘彦卓, 钟旭华. 氮肥运筹对水稻根系生长发育的影响及其与氮肥吸收利用的关系[J]. 作物杂志, 2023, (5): 179–186
[8] 刘慧, 龙学毅, 焦岩, 王丽红. 生物炭与磷肥配施对水稻生长发育及产量的影响[J]. 作物杂志, 2023, (5): 238–248
[9] 杨程, 张德奇, 杜思梦, 张丽佳, 靳海洋, 李滢, 邵运辉, 王汉芳, 方保停, 李向东, 刘美君. 黑暗和强光下脱水对小麦离体叶片光系统活性的影响[J]. 作物杂志, 2023, (5): 98–103
[10] 张蛟, 陈澎军, 陈艳, 韩继军, 崔士友. 滩涂水产养殖池复垦种稻短期内土壤特性变化及水稻产量表现[J]. 作物杂志, 2023, (4): 118–125
[11] 陈玥, 宫亮, 金丹丹, 张鑫, 李波, 邹晓锦, 隋世江, 叶鑫, 刘艳. 北方粳稻最优产量氮肥阈值周年变化及其影响因素分析[J]. 作物杂志, 2023, (4): 144–151
[12] 姜珊, 刘佳, 曹亮, 任春元, 金喜军, 张玉先. 外源褪黑素对干旱胁迫下红小豆幼苗生长和产量的影响[J]. 作物杂志, 2023, (4): 202–209
[13] 花芹, 林泉祥, 宋远辉, 孙家猛, 张祖普, 陈庆全, 李金才, 张海涛. 水稻粉质胚乳突变体cse的表型分析及基因定位[J]. 作物杂志, 2023, (4): 22–30
[14] 杨洪伟, 张丽颖, 李晓辉. 盐、碱胁迫下水稻种子萌发过程水分含量变化及对种子发芽影响的低场核磁检测研究[J]. 作物杂志, 2023, (4): 253–259
[15] 栾金华, 宋欣阳, 汪磊, 孙丽丽, 程艳双, 董浩, 张佳, 程效义, 徐海. 辽宁省水稻新品系苗期耐盐性差异研究[J]. 作物杂志, 2023, (3): 20–26
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!