作物杂志,2024, 第6期: 140–146 doi: 10.16035/j.issn.1001-7283.2024.06.019

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

盐胁迫对燕麦生长及生理指标的影响

李峰1(), 高宏云2(), 张翀3, 张宝英1, 马建富1, 郭娜1, 白苇1, 方爱国1, 杨志敏1(), 李源4()   

  1. 1张家口市农业科学院,075000,河北张家口
    2新疆石河子职业技术学院,832003,新疆石河子
    3西南大学动物科学技术学院,400715,重庆
    4河北省农林科学院旱作农业研究所,053000,河北衡水
  • 收稿日期:2023-07-27 修回日期:2023-11-14 出版日期:2024-12-15 发布日期:2024-12-05
  • 通讯作者: 杨志敏,主要从事牧草育种与栽培研究,E-mail:nkyyzm@163.com;李源,主要从事牧草育种及生产利用技术研究,E-mail:gsly868@163.com
  • 作者简介:李峰,主要从事牧草资源与育种研究,E-mail:20234350@qq.com;|高宏云为共同第一作者,主要从事现代农业技术研究,E-mail:2415294011@qq.com
  • 基金资助:
    河北省重点研发计划项目(19226424D);河北省现代农业产业技术体系草业创新团队建设专项资金项目(HBCT2018160201);张家口市科技支持计划项目(1511063C);张家口市重点研发计划项目(1911016C-2)

Effects of Salt Stress on Growth and Physiological Indexes of Oat

Li Feng1(), Gao Hongyun2(), Zhang Chong3, Zhang Baoying1, Ma Jianfu1, Guo Na1, Bai Wei1, Fang Aiguo1, Yang Zhimin1(), Li Yuan4()   

  1. 1Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
    2Shihezi Vocational and Technical College of Xinjiang, Shihezi 832003, Xinjiang, China
    3College of Animal Science and Technology, Southwest University, Chongqing 400715, China
    4Institute of Dry Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, Hebei, China
  • Received:2023-07-27 Revised:2023-11-14 Online:2024-12-15 Published:2024-12-05

摘要:

采用耐盐燕麦品种张燕7号(A)和盐敏感品种坝莜18号(B)为试验材料,研究不同盐胁迫处理(对照0.0%、0.2%、0.4%和0.6%)对燕麦生长、光合生理特性及籽粒酚类物质含量的影响。结果表明,随着盐浓度增加,品种A和B出苗率、株高、单株干重、单株鲜重和叶片含水量都显著降低;在0.2%盐浓度下,2个品种的净光合速率、胞间CO2浓度、超氧化物歧化酶和过氧化物酶活性都显著高于对照;在0.4%盐浓度处理下相对叶绿素含量和蒸腾速率显著高于对照。在0.6%浓度盐处理下气孔限制值达到最高峰,品种A较B高。盐浓度分别在0.6%和0.4%时,品种A和B籽粒总酚和总黄酮含量达到最高水平。盐浓度0.6%时,2个品种籽粒的抗氧化能力达到最高。综上所述,盐胁迫会影响植株的生长,降低光合指标,提高燕麦的酶活性、酚类物质及抗氧化能力,且盐胁迫对盐敏感品种坝莜18号的抑制作用大于耐盐品种张燕7号。

关键词: 燕麦, 盐胁迫, 光合作用, 抗氧化剂, 酚类, 生理特性

Abstract:

Salt-tolerant oat variety Zhangyan 7 (A) and salt-sensitive variety Bayou 18 (B) were used as experimental materials to study the effects of different salt stress treatments (control 0.0%, 0.2%, 0.4% and 0.6%) on the growth, photosynthetic physiological characteristics and the contents of phenolic substances in oat grains. The results showed that, with the increase of salt concentration, the emergence rate, plant height, dry weight per plant, fresh weight per plant and leaf water content of A and B decreased significantly. Under 0.2% salt concentration, the Pn, Ci, SOD and POD activities of the two varieties were significantly higher than those of the control. The SPAD and Tr of A and B were higher than control at 0.4% salt concentration. Under the treatment of 0.6% concentration salt, Ls reached the highest peak, and variety A was higher than B. When the salt concentration were 0.6% and 0.4%, the contents of total phenol and total flavonoid in seeds of varieties A and B reached the highest level, respectively. When the salt concentration was 0.6%, the antioxidant capacity of two varieties reached the highest. In summary, salt stress can affect plant growth, reduce photosynthetic indexes, and improve enzyme activity, phenolic substances and antioxidant capacity of oat. Moreover, salt stress had a greater inhibitory effect on salt-sensitive Bayou 18 than salt-tolerant variety Zhangyan 7.

Key words: Oat, Salt stress, Photosynthesis, Antioxidants, Phenolics, Physiological characteristics

表1

不同盐浓度对燕麦生长的影响

处理
Treatment
株高
Plant height (cm)
出苗率
Emergence rate (%)
单株干重
Dry weight per plant (g)
单株鲜重
Fresh weight per plant (g)
叶片相对含水量
RWC (%)
A0 84.53±1.70a 96.05±1.03a 1.58±0.05a 7.72±0.20a 75.06±6.01b
A1 74.43±1.22b 91.12±1.58b 1.25±0.05b 6.56±0.34b 88.32±2.23a
A2 62.51±1.40c 82.33±1.02c 0.93±0.07c 5.82±0.03c 68.44±2.58c
A3 52.45±1.05d 75.35±1.56d 0.62±0.01d 3.00±0.08d 27.07±2.77d
B0 79.11±2.65a 90.11±0.67a 1.28±0.05a 6.65±0.09a 82.88±2.30b
B1 68.75±2.42b 84.49±1.59b 1.09±0.05b 5.37±0.08b 92.09±2.04a
B2 58.55±2.11c 80.71±1.06c 0.73±0.02c 4.69±0.14c 76.65±2.87c
B3 52.78±1.09d 68.66±1.55d 0.52±0.01d 2.37±0.08d 23.37±3.08d

图1

不同盐浓度对SPAD和光合指标的影响 不同小写字母表示处理间差异显著(P < 0.05),下同。

表2

不同盐浓度对燕麦抗氧化酶活性和MDA含量的影响

处理
Treatment
SOD活性
SOD activity [U/(min·g)]
POD活性
POD activity [U/(min·g)]
CAT活性
CAT activity [U/(min·g)]
MDA含量
MDA content (nmol/g)
A0 7928.33±44.88d 2.03±0.02b 2.88±0.02d 31.11±0.67c
A1 11 976.67±29.87a 2.63±0.14a 4.57±0.08c 31.41±0.60c
A2 9890.33±63.26b 1.64±0.14c 5.33±0.08b 33.95±0.06b
A3 9482.33±89.51c 0.99±0.02d 6.04±0.05a 36.84±0.05a
B0 7255.33±42.10d 1.68±0.18c 4.03±0.03d 53.55±0.69d
B1 7767.67±63.01c 2.56±0.08a 4.61±0.04c 61.26±1.01c
B2 8890.67±20.11a 2.05±0.05b 5.05±0.02b 78.51±0.86b
B3 8742.33±21.96b 1.20±0.08d 5.52±0.06a 87.07±1.48a

图2

不同盐浓度对燕麦总酚、总黄酮及抗氧化能力的影响

表3

不同盐浓度对燕麦单体酚的影响

处理Treatment 香草酸Vanillic acid 咖啡酸Caffeic acid 对香豆酸P-coumaric acid 阿魏酸Ferulic acid 芦丁Rutin
A0 44.23±2.35c 36.28±0.67c 24.90±0.18c 18.36±1.14c 69.23±1.52d
A1 45.23±1.94c 41.05±1.12b 29.77±1.97b 15.31±0.20d 113.96±3.02c
A2 75.97±3.47b 33.05±0.36d 36.31±0.18a 35.58±0.86b 180.97±3.97b
A3 164.85±3.31a 47.28±0.57a 36.91±2.92a 68.24±0.44a 298.03±5.09a
B0 57.80±1.15c 25.51±1.36d 28.85±1.30c 15.66±0.65d 110.71±10.18d
B1 65.96±0.77b 41.85±0.46c 29.84±1.66c 31.63±2.04c 196.77±3.59c
B2 112.75±1.66a 43.55±0.84b 34.88±0.45b 52.45±2.47b 381.62±7.55b
B3 49.55±1.35d 75.39±0.63a 45.53±1.02a 99.38±1.40a 433.64±1.94a
[1] 赵凤云, 郭善利, 王增兰, 等. 耐盐转基因植物研究进展. 植物生理与分子生物学学报, 2003, 29(3):171-178.
[2] 张建锋, 张旭东, 周金星, 等. 世界盐碱地资源及其改良利用的基本措施. 水土保持研究, 2005(6):32-34,111.
[3] 王智颖. 松嫩平原盐碱地分布及空间变化研究. 哈尔滨:哈尔滨师范大学, 2020.
[4] 付珊, 雷婷, 金苇, 等. 盐胁迫对番茄幼苗生长及生理指标的影响. 湖北师范大学学报(自然科学版), 2023, 43(3):9-15.
[5] Giuseppe C, Salvatore C, Mariano F, et al. Salinity differentially affects growth and ecophysiology of two mastic tree (Pistacia lentiscus L.) accessions. Forests, 2016, 7(8):156.
[6] Liu L, Wang B. Protection of halophytes and their uses for cultivation of saline-alkali soil in China. Biology, 2021, 10(5):353-353.
[7] Jia X M, Zhu Y F, Hu Y, et al. Integrated physiologic,proteomic,and metabolomic analyses of Malus halliana adaptation to saline-alkali stress. Horticulture Research, 2019, 6(1):1-19.
[8] Fricke W. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. Journal of Experimental Botany, 2004, 55(399):1115-1123.
pmid: 15047763
[9] Bai J H, Liu J H, Jiao W H, et al. Proteomic analysis of salt-responsive proteins in oat roots (Avena sativa L.). Journal of the Science of Food and Agriculture, 2016, 96(11):3867-3875.
[10] 王波, 宋凤斌. 燕麦对盐碱胁迫的反应和适应性. 生态环境, 2006(3):625-629.
[11] Bekele W A, Wight C P, Chao S, et al. Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnology Journal, 2018, 16(8):1452-1463.
doi: 10.1111/pbi.12888 pmid: 29345800
[12] Han L, Eneji A E, Steinberger Y, et al. Comparative biomass production of six oat varieties in a saline soil ecology. Communications in Soil Science and Plant Analysis, 2014, 45(19):2552-2564.
[13] Gutierrez-Gonzalez J J, Garvin D F. Subgenome-specific assembly of vitamin E biosynthesis genes and expression patterns during seed development provide insight into the evolution of oat genome. Plant Biotechnology Journal, 2016, 14(11):2147-2157.
doi: 10.1111/pbi.12571 pmid: 27135276
[14] 梁茜茜. 燕麦麸多糖超声微波协同提取工艺优化及对高脂血大鼠的降脂作用研究. 大庆:黑龙江八一农垦大学, 2017.
[15] 王波, 张金才, 宋凤斌, 等. 盐碱胁迫对燕麦光合特性的影响. 中国农学通报, 2007(5):235-238.
[16] 武俊英, 刘景辉, 李倩. 盐胁迫对燕麦幼苗生长K+、Na+吸收和光合性能的影响. 西北农业学报, 2010, 19(2):100-105.
[17] Goyal M, Asthir B. Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regulation, 2010, 60(1):13-25.
[18] 张古文, 朱月林, 刘正鲁, 等. Ca(NO3)2胁迫对嫁接番茄生长、抗氧化酶活性和活性氧代谢的影响. 植物营养与肥料学报, 2008(3):527-532.
[19] 刘芳, 付艳, 高树仁, 等. 玉米幼苗的盐胁迫反应及玉米耐盐性的鉴定. 黑龙江八一农垦大学学报, 2007, 19(6):22-26.
[20] 张治安, 陈展宇. 植物生理学实验技术. 长春: 吉林大学出版社, 2000.
[21] Hossain M A, Rahman S M M. Total phenolics,flavonoids and antioxidant activity of tropical fruit pineapple. Food Research International, 2011, 44(3):672-676.
[22] Thaipong K, Boonprakob U, Crosby K, et al. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 2012, 19(6/7):669-675.
[23] 蔡天革, 王鹏, 唐凤德. 盐胁迫对燕麦种子萌发和幼苗抗氧化酶的影响. 辽宁大学学报(自然科学版), 2016, 43(1):74-78.
[24] Zhang X Q, Lu Z Y, Cheng Y C, et al. Effects of mixed salt stress on germination percentage and protection system of oat seedling. Advance Journal of Food Science and Technology, 2013, 5(2):197-205.
[25] Foolad M R, Lin G Y, Quaslet C O. Relationships between cold- and salt-tolerance during seed germination in tomato: germplasm evaluation. Plant Breeding, 2010, 118(1):45-48.
[26] 徐正辉. 萌发期燕麦对不同梯度盐胁迫的响应. 中国草食动物科学, 2020, 40(3):36-39.
[27] 王旭明, 赵夏夏, 周鸿凯, 等. NaCl胁迫对不同耐盐性水稻某些生理特性和光合特性的影响. 热带作物学报, 2019, 40(5):882-890.
doi: 10.3969/j.issn.1000-2561.2019.05.008
[28] Sapre S, Gontia-Mishra I, Tiwari S. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiological Research, 2018, 206:25-32.
[29] 王苗苗, 赵桂琴, 梁国玲, 等. 不同耐盐性燕麦对盐胁迫的生理响应. 草业科学, 2021, 38(11):2200-2209.
[30] 孙璐, 周宇飞, 李丰先, 等. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012, 45(16):3265-3272.
doi: 10.3864/j.issn.0578-1752.2012.16.005
[31] 孙文越, 王辉, 黄久常. 外源甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响. 西北植物学报, 2001, 21(3):487-491.
[32] Wu B, Munkhtuya Y, Li J J, et al. Comparative transcriptional profiling and physiological responses of two contrasting oat genotypes under salt stress. Scientific Reports, 2018, 8(1):16248.
doi: 10.1038/s41598-018-34505-5 pmid: 30389990
[33] 曹慧, 王孝威, 韩振海, 等. 水分胁迫诱导平邑甜茶叶片衰老期间内肽酶与活性氧累积的关系. 中国农业科学, 2004, 37 (2):274-279.
[34] 刘文瑜, 杨发荣, 黄杰, 等. NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响. 西北植物学报, 2017, 37(9):1797-1804.
[35] 汤春芳, 刘云国, 曾光明, 等. 镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响. 植物生理与分子生物学学报, 2004, 30(4):469-474.
[36] 刘凤歧, 刘杰淋, 朱瑞芬, 等. 4种燕麦对NaCl胁迫的生理响应及耐盐性评价. 草业学报, 2015, 24(1):183-189.
doi: 10.11686/cyxb20150122
[37] Varga M, Jójárt R, Fónad P, et al. Phenolic composition and antioxidant activity of colored oats. Food Chemistry, 2018, 268:153-161.
doi: S0308-8146(18)31006-9 pmid: 30064743
[38] 邓佳琪, 李娟娟, 贺馨怡, 等. 光照处理对发芽燕麦中多酚类物质含量及抗氧化活性的影响. 西北农林科技大学学报(自然科学版), 2021, 49(10):120-128.
[1] 李斐, 边少锋, 徐晨, 赵洪祥, 宋杭霖, 王芙臣, 庄妍. 坡耕地垄侧栽培对玉米生理特性及生长发育的影响[J]. 作物杂志, 2024, (6): 120–125
[2] 李晓婷, 张婷婷, 张艳丽, 李志伟, 韩丽, 赵鑫瑶, 张永平, 李立军. 燕麦地上部可培养内生真菌多样性分析及其功能研究[J]. 作物杂志, 2024, (6): 194–204
[3] 鄂利锋, 徐金崇, 陈修斌, 权建华, 华军, 尹丽娟, 王舜奇, 赵文勤. 外源硅对盐胁迫下娃娃菜种子萌发及幼苗生理特性的影响[J]. 作物杂志, 2024, (6): 212–217
[4] 肖晓, 钟坤权, 屠小菊, 易镇邪. 低温锻炼持续时间对菜用甘薯幼苗耐寒生理特性的影响[J]. 作物杂志, 2024, (5): 140–145
[5] 雷云, 熊露露, 王健健. CO2浓度升高对不同薏苡品种生长及生理特性的影响[J]. 作物杂志, 2024, (5): 181–187
[6] 张旭丽, 王瑞军, 郗小倩, 冯学金, 李洪. 干旱胁迫及复水对黄芪幼苗生长、生理特性及次生代谢产物积累的影响[J]. 作物杂志, 2024, (5): 204–211
[7] 王文霞, 畅博凯, 夏清, 智慧, 杜杰. 叶面喷硒对胡麻生理特性、产量及品质的影响[J]. 作物杂志, 2024, (4): 130–137
[8] 范昱, 冯亮, 王俊珍, 杨乔惠, 任远航, 张凯旋, 邹亮, 周美亮, 向达兵. 不同品种燕麦的营养成分分析[J]. 作物杂志, 2024, (4): 71–81
[9] 顾怀应, 胡诗钦, 赵晴, 刘长华, 孟丽君. 根际微生物增强水稻耐盐性研究进展[J]. 作物杂志, 2024, (4): 8–13
[10] 孙悦颖, 刘景辉, 米俊珍, 赵宝平, 李英浩, 朱珊珊. 乳酸菌复合制剂对燕麦的促生作用研究[J]. 作物杂志, 2024, (2): 122–128
[11] 合佳敏, 张永清, 张萌, 梁萍, 王丹, 严翻翻. 烯效唑浸种对盐碱胁迫下藜麦农艺性状及生理特性的影响[J]. 作物杂志, 2024, (2): 234–241
[12] 周镇磊, 刘建明, 曹东, 刘宝龙, 王东霞, 张怀刚. 不同燕麦品种草产量、农艺性状和饲草品质的比较[J]. 作物杂志, 2024, (1): 132–140
[13] 王晓蕾, 张云鹤, 牟金猛, 高大鹏, 耿艳秋, 曹译文, 卢芬, 关政闻, 邵玺文, 郭丽颖. 苏打盐碱胁迫对水稻光合特性及产量的影响[J]. 作物杂志, 2024, (1): 193–203
[14] 张璐, 李登明, 翟晓宇, 武俊英, 高世华, 赵宇飞. 燕麦刈割期农艺与品质性状差异及其与再生性能的关系[J]. 作物杂志, 2024, (1): 220–228
[15] 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 65–72
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!