作物杂志,2025, 第6期: 100–111 doi: 10.16035/j.issn.1001-7283.2025.06.013

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

藜麦LEA基因家族鉴定及盐胁迫下的表达分析

张业猛1,2(), 卢柯欣1, 毛文钰1, 张晓燕1, 李文静1, 杨修1   

  1. 1 济宁学院生命科学与工程学院, 273155, 山东曲阜
    2 中国科学院西北高原生物研究所, 810000, 青海西宁
  • 收稿日期:2025-05-17 修回日期:2025-06-14 出版日期:2025-12-15 发布日期:2025-12-12
  • 作者简介:张业猛,主要从事植物遗传研究,E-mail:zhangyemeng@jnxy.edu.cn
  • 基金资助:
    山东省自然科学基金青年项目(ZR2024QC385);山东省自然科学基金青年项目(ZR2024QH647);济宁学院“百名卓越人才”(2023ZYRC51);济宁学院“百名卓越人才”(2023ZYRC44)

Identification and Expression Analysis of LEA Gene Family in Chenopodium quinoa Willd. under Salt Stress

Zhang Yemeng1,2(), Lu Kexin1, Mao Wenyu1, Zhang Xiaoyan1, Li Wenjing1, Yang Xiu1   

  1. 1 School of Life Science and Bioengineering, Jining University, Qufu 273155, Shandong, China
    2 Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810000, Qinghai, China
  • Received:2025-05-17 Revised:2025-06-14 Online:2025-12-15 Published:2025-12-12

摘要:

为分析藜麦LEA基因家族的理化性质、染色体分布、基因结构、蛋白保守基序、物种间共线性及表达模式,利用生物信息学方法对藜麦LEAs进行全基因组鉴定。结果显示,在藜麦基因组中共鉴定到64个LEA基因家族成员,分属7个亚组,分布于13条染色体上,同一亚组的成员具有相似的基因结构和保守基序。种内共线性分析发现,64个LEA基因存在20个重复基因对;种间共线性分析发现,其与豆科植物之间具有高度的进化保守性。LEA基因的启动子区域存在多种激素和非生物胁迫相关的作用元件,其中46个LEA基因受盐胁迫诱导表达,通过GO注释发现主要参与解剖结构发育、根系发育、防御响应和生殖系统发育等生物学过程,各亚组基因发挥不同作用以提升藜麦盐胁迫耐受性。

关键词: 藜麦, LEA基因家族, 盐胁迫, 重复基因, 顺式作用元件

Abstract:

In order to analyze the physicochemical properties, chromosomal distribution, gene structure, protein conserved motifs, interspecies synteny and expression patterns of the LEA gene family in quinoa, LEAs were identified in the whole genome of quinoa using bioinformatics methods. The results showed that a total of 64 LEA gene family members were identified in the quinoa genome, belonging to seven subgroups and distributed on 13 chromosomes, and the members of the same subgroups have similar gene structures and conserved motifs. Intraspecific and interspecies synteny analysis revealed 20 duplicate gene pairs among 64 LEA genes, and a high degree of evolutionary conservation with species in the Leguminosae. Promoter analysis of LEA genes revealed the presence of various cis-acting elements related to hormones and abiotic stress. Among them, 46 LEA genes were induced by salt stress, and GO annotation revealed involvement in biological processes such as anatomical structure development, root development, defense response, and reproductive system development, suggesting that members of the various subgroups of LEAs may play different roles in different biological processes enhancing salt stress tolerance in quinoa.

Key words: Quinoa, LEA gene family, Salt stress, Duplicated genes, Cis-acting element

表1

藜麦LEA基因实时荧光定量引物

基因ID Gene ID 上游引物Forward primer (5'-3') 下游引物Reverse primer (5'-3')
AUR62012039 AGGAAAGAAAGCAGTAGAGTCC AGTGGTGGAGTGAGTGTGAG
AUR62040787 ACCGATGAACCCGAGAATC TTAGCCTGTCAACCGAGTAGC
AUR62008681 CGCTCTCTATCCAACGCTAAG TCAGCAACATCAATCTCAGC
AUR62025562 TGGCTCGCTCTCTATTCAAC CCTGTAGTATCCAGTTACGGG
AUR62018884 CAAATCGTTTCTCACCCAAC AAAGGTCTTCTGCTCCAGC
AUR62005994 CATTTGGTTCATCCTCCAC TGTTGCCCTTTGTAAGAAGC
LOC110715281 (ACT-1)[16] GTCCACAGAAAGTGCTTCTAAG AACAACTCCTCACCTTCTCATG

图1

藜麦LEA蛋白的系统进化分析

表2

藜麦LEA蛋白的理化性质及亚细胞定位

蛋白ID
Protein ID
氨基酸长度
Amino acid length
分子量
Molecular weight (Da)
等电点
pI
亲水性指数
Hydropathy index
亚细胞定位预测
Subcellular localization prediction
亚组
Subgroup
AUR62015378 585 62 135.91 6.16 -0.905 细胞核 LEA_1
AUR62012039 185 18 965.61 9.16 -0.941 细胞核 LEA_1
AUR62007271 135 14 669.53 9.46 -0.916 细胞核 LEA_1
AUR62018728 133 14 474.30 9.52 -0.932 细胞核 LEA_1
AUR62037998 411 46 980.05 9.10 -0.148 细胞核 LEA_1
AUR62023336 66 7632.58 5.94 -1.315 细胞核 LEA_1
AUR62024021 195 22 461.13 9.73 -0.282 叶绿体 LEA_2
AUR62041321 195 22 560.25 9.67 -0.335 叶绿体 LEA_2
AUR62001543 265 30 001.52 9.49 0.010 细胞膜 LEA_2
AUR62023990 235 26 515.15 9.78 -0.234 细胞膜 LEA_2
AUR62031792 235 26 387.11 9.87 -0.208 细胞膜 LEA_2
AUR62004562 253 27 621.05 10.56 -0.245 细胞核 LEA_2
AUR62011004 134 14 815.91 5.26 0.050 叶绿体 LEA_2
AUR62016447 221 25 098.34 9.55 -0.133 叶绿体 LEA_2
AUR62042923 221 25 233.27 9.32 -0.138 叶绿体 LEA_2
AUR62002497 385 42 855.48 5.99 -0.321 叶绿体 LEA_2
AUR62023689 369 41 236.24 5.83 -0.459 细胞质 LEA_2
AUR62004417 327 36 389.79 6.88 -0.233 细胞核 LEA_2
AUR62022623 261 29 129.75 8.81 -0.141 叶绿体 LEA_2
AUR62004416 159 17 883.58 5.94 -0.311 叶绿体 LEA_2
AUR62022622 159 17 911.63 5.94 -0.313 叶绿体 LEA_2
AUR62037343 230 26 081.43 8.38 0.061 叶绿体 LEA_2
AUR62036201 397 42 223.68 6.90 -0.251 细胞质 LEA_2
AUR62012636 625 70 739.43 7.36 -0.342 叶绿体 LEA_2
AUR62022020 907 100 918.35 9.26 -0.264 叶绿体 LEA_2
AUR62037531 257 28 396.07 9.68 -0.202 细胞核 LEA_2
AUR62044049 260 28 782.62 9.84 -0.165 线粒体 LEA_2
AUR62038568 260 28 969.89 9.95 -0.105 细胞核 LEA_2
AUR62040787 260 29 063.15 9.89 -0.073 细胞膜 LEA_2
AUR62036192 201 22 519.08 9.37 -0.090 细胞核 LEA_2
AUR62009745 202 22 541.10 9.37 -0.084 叶绿体 LEA_2
AUR62025118 411 44 859.42 9.83 0.009 细胞膜 LEA_2
AUR62037168 294 32 124.13 9.74 -0.330 叶绿体 LEA_2
AUR62037166 294 32 124.13 9.74 -0.330 叶绿体 LEA_2
AUR62009984 362 40 962.60 9.28 -0.409 叶绿体 LEA_2
AUR62037049 235 26 528.57 9.15 -0.274 叶绿体 LEA_2
AUR62029813 193 20 922.48 10.08 0.216 叶绿体 LEA_2
AUR62006457 193 20 962.50 10.02 0.210 细胞核 LEA_2
AUR62028077 506 55 181.12 5.71 -0.133 细胞壁 LEA_2
AUR62005994 210 23 568.40 9.40 -0.006 细胞膜 LEA_2
AUR62030850 727 83 308.07 6.24 -0.230 叶绿体 LEA_2
AUR62027010 209 22 664.20 9.32 0.171 细胞膜 LEA_2
AUR62029814 211 23 171.20 9.97 0.120 叶绿体 LEA_2
AUR62006458 211 23 160.13 9.87 0.096 叶绿体 LEA_2
AUR62024025 169 19 641.29 7.79 -0.349 过氧化物酶体 LEA_2
AUR62041317 217 24 772.49 9.14 -0.156 细胞壁 LEA_2
AUR62001542 212 23 801.43 9.49 -0.028 叶绿体 LEA_2
AUR62020241 214 24 051.61 9.54 -0.009 叶绿体 LEA_2
AUR62037051 209 23 402.50 9.68 0.176 细胞膜 LEA_2
AUR62006280 256 29 111.35 10.44 -0.128 叶绿体 LEA_2
AUR62025562 93 10 039.37 9.89 -0.357 叶绿体 LEA_3a
AUR62008681 93 9969.23 9.89 -0.387 叶绿体 LEA_3a
AUR62025623 101 11 655.31 9.69 -0.517 叶绿体 LEA_3a
AUR62001414 100 11 431.16 9.77 -0.380 叶绿体 LEA_3a
AUR62005925 125 13 672.20 7.91 -0.582 细胞核 LEA_3b
AUR62028136 164 17 893.23 6.74 -0.235 细胞核 LEA_3b
AUR62018884 125 13 633.10 6.96 -0.648 细胞核 LEA_3b
AUR62040165 498 53 522.13 6.87 -1.016 细胞核 LEA_4
AUR62030479 114 12 430.48 5.77 -1.383 细胞核 LEA_5
AUR62030818 114 12 433.50 6.16 -1.403 细胞核 LEA_5
AUR62007217 84 9075.84 5.92 -1.585 细胞核 LEA_5
AUR62018784 84 8950.71 5.90 -1.474 细胞核 LEA_5
AUR62038279 87 9085.71 4.46 -1.171 细胞核 LEA_6
AUR62003966 87 9126.81 4.59 -1.183 细胞核 LEA_6

图2

藜麦LEA基因结构及motif分析

图3

藜麦LEA基因的染色体定位分析

图4

藜麦LEA基因家族成员共线性分析 内圈数字表示染色体序号。

图5

藜麦与拟南芥、水稻、蒺藜苜蓿和大豆中LEA基因共线性分析 红线为LEA共线性基因对,灰线为其他基因的共线性。数字表示上述作物基因组的染色体数量。

图6

藜麦LEA基因家族成员的顺式作用元件分析

图7

盐胁迫条件下藜麦LEA基因家族成员的表达模式

图8

藜麦LEA基因家族成员的GO注释

[1] Miyazaki K, Ohkubo Y, Yasui H, et al. Overexpression of rice OsLEA5 relieves the deterioration in seed quality caused by high- temperature stress. Plant Biotechnology, 2021, 38(3):367-371.
doi: 10.5511/plantbiotechnology.21.0603a pmid: 34782824
[2] Vidović M, Battisti I, Pantelić A, et al. Desiccation tolerance in Ramonda serbica panc.: an integrative transcriptomic, proteomic, metabolite and photosynthetic study. Plants, 2022, 11(9):1199.
doi: 10.3390/plants11091199
[3] Dure L Ⅲ, Greenway S C, Galau G A. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 1981, 20(14):4162-4168.
doi: 10.1021/bi00517a033 pmid: 7284317
[4] Huang R L, Xiao D, Wang X, et al. Genome-wide identification,evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.). BMC Plant Biology, 2022, 22(1):155.
doi: 10.1186/s12870-022-03462-7
[5] Jia C P, Guo B, Wang B K, et al. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. BMC Plant Biology, 2022, 22(1):596.
doi: 10.1186/s12870-022-03953-7
[6] Singh K K, Graether S P. The in vitro structure and functions of the disordered late embryogenesis abundant three proteins. Protein Science, 2021, 30(3):678-692.
doi: 10.1002/pro.4028 pmid: 33474748
[7] Furuki T, Sakurai M. Group 3 LEA protein model peptides protect enzymes against desiccation stress. Acta Biochimica et Biophysica Sinica, 2016, 1864(9):1237-1243.
[8] Nadarajah K K. ROS homeostasis in abiotic stress tolerance in plants. International Journal of Molecular Sciences. 2020, 21(15):5208.
doi: 10.3390/ijms21155208
[9] Zhou C C, Niu S H, El-Kassaby Y A, et al. Genome-wide identification of late embryogenesis abundant protein family and their key regulatory network in Pinus tabuliformis cold acclimation. Tree Physiology, 2023, 43(11):1964-1985.
doi: 10.1093/treephys/tpad095
[10] Yang Z F, Mu Y H, Wang Y Q, et al. Characterization of a novel TtLEA2 gene from Tritipyrum and its transformation in wheat to enhance salt tolerance. Frontiers in Plant Science, 2022, 13:830848.
doi: 10.3389/fpls.2022.830848
[11] Cheng Z H, Zhang X M., Yao W J. et al. Genome-wide search and structural and functional analyses for late embryogenesis- abundant (LEA) gene family in poplar. BMC Plant Biology, 2021, 21(1):110.
doi: 10.1186/s12870-021-02872-3
[12] Hinojosa L, González J, Barrios-Masias F, et al. Quinoa abiotic stress responses: a review. Plants, 2018, 7(4):106.
doi: 10.3390/plants7040106
[13] Younis I Y, Sedeek M S, Essa A F, et al. Exploring geographic variations in quinoa grains: unveiling anti-alzheimer activity via GC-MS, LC-QTOF-MS/MS, molecular networking, and chemometric analysis. Food Chemistry, 2025, 465:141918.
doi: 10.1016/j.foodchem.2024.141918
[14] Jarvis D E, Ho Y S, Lightfoot D J, et al. The genome of Chenopodium quinoa. Nature, 2017, 542:307-312.
doi: 10.1038/nature21370
[15] Zhao Y Y, Hao Y P, Dong Z Y, et al. Identification and expression analysis of LEA gene family members in pepper (Capsicum annuum L.). FEBS Open Bio, 2023, 13(12):2246-2262.
doi: 10.1002/feb4.v13.12
[16] 贾冰晨, 王宇, 张东亮, 等. 藜麦内参基因筛选及盐胁迫相关基因表达分析. 烟台大学学报(自然科学与工程版), 2020, 33(3):283-288.
[17] Zhao X X, Wang S Y, Guo F G, et al. Genome-wide identification of polyamine metabolism and ethylene synthesis genes in Chenopodium quinoa Willd. and their responses to low-temperature stress. BMC Genomics, 2024, 25(1):370.
doi: 10.1186/s12864-024-10265-7
[18] Wang Q, Lei X J, Wang Y H, et al. Genome-wide identification of the LEA gene family in Panax ginseng: evidence for the role of PgLEA2-50 in plant abiotic stress response. Plant Physiology and Biochemistry, 2024, 212:108742.
doi: 10.1016/j.plaphy.2024.108742
[19] Chen Y K, Li C H, Zhang B, et al. The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response: a comprehensive expression analysis of potato (Solanum tuberosum). Genes, 2019, 10(2):148.
doi: 10.3390/genes10020148
[20] Li Y F, Xu Y H, Ma Z W. Comparative analysis of the exon- intron structure in eukaryotic genomes. Yangtze Medicine, 2017, 1(1):50-64.
doi: 10.4236/ym.2017.11006
[21] Hibshman J D, Goldstein B. LEA motifs promote desiccation tolerance in vivo. BMC Biology, 2021, 19(1):263.
doi: 10.1186/s12915-021-01176-0 pmid: 34903234
[22] Chen Y, Shen J, Zhang L, et al. Nuclear translocation of OsMFT 1 that is impeded by OsFTIP1 promotes drought tolerance in rice. Molecular Plant, 2021, 14(8):1297-1311.
doi: 10.1016/j.molp.2021.05.001
[23] Lu Y, Sun J, Yang Z M, et al. Genome-wide identification and expression analysis of glycine-rich RNA-binding protein family in sweet potato wild relative Ipomoea trifida. Gene, 2019, 686:177-186.
doi: S0378-1119(18)31187-9 pmid: 30453066
[24] Hu M Q, Li Z Q, Lin X J, et al. Comparative analysis of the LEA gene family in seven Ipomoea species, focuses on sweet potato (Ipomoea batatas L.). BMC Plant Biology, 2024, 24:1256.
doi: 10.1186/s12870-024-05981-x
[25] Jia J S, Ge N, Wang Q Y, et al. Genome-wide identification and characterization of members of the LEA gene family in Panax notoginseng and their transcriptional responses to dehydration of recalcitrant seeds. BMC Genomics, 2023, 24(1):126.
doi: 10.1186/s12864-023-09229-0
[26] Zhang Y J, Fan N N, Wen W W, et al. Genome-wide identification and analysis of LEA_2 gene family in alfalfa (Medicago sativa L.) under aluminum stress. Frontiers in Plant Science, 2022, 13:976160.
doi: 10.3389/fpls.2022.976160
[27] Liu S Y, Zhang L, Sang Y P, et al. Demographic history and natural selection shape patterns of deleterious mutation load and barriers to introgression across Populus genome. Molecular Biology and Evolution, 2022, 39(2):msac008.
[1] 陈奕, 陈潇, 张茂星, 李静, 常静静, 李嘉炜, 林海晴, 陈兴平, 邓晓亮, 谢大森, 郭少龙, 沈仲灯, 张白鸽. 不同冬瓜品种对低盐胁迫的响应及其耐盐性综合评价[J]. 作物杂志, 2025, (6): 58–66
[2] 滕文, 叶凡, 周舟, 王屿乐, 刘立军. 小麦和油菜秸秆还田处理对盐胁迫下水稻产量和品质的影响[J]. 作物杂志, 2025, (5): 11–18
[3] 闫晶蓉, 庞春花, 张永清, 毋悦悦, 侯钰晨, 王嘉祺, 乔曼. 脱硫石膏与腐植酸配施对盐碱地土壤及藜麦生长的影响[J]. 作物杂志, 2025, (5): 47–53
[4] 王兖薇, 武俊喜, 汪艳, 牟涛, 朗卓玛, 苗彦军. 盐碱胁迫对异株荨麻种子萌发的影响[J]. 作物杂志, 2025, (5): 67–73
[5] 李小雨, 黄杰, 杨钊, 柴继宽, 杨发荣, 魏玉明, 刘文瑜, 拜伟俊. 基于AHP法的观赏藜麦综合评价体系的建立与应用[J]. 作物杂志, 2025, (3): 70–77
[6] 张圣昌, 魏玉明, 马丽娜, 杨钊, 刘文瑜, 黄杰, 刘欢, 杨发荣. 种植密度和施肥对饲用型藜麦生长特性的影响[J]. 作物杂志, 2025, (2): 128–134
[7] 景茂雅, 张子玉, 张萌, 合佳敏, 严翻翻, 高艳梅, 张永清. 水杨酸浸种对盐胁迫藜麦种子萌发及幼苗生长的影响[J]. 作物杂志, 2025, (1): 194–201
[8] 李峰, 高宏云, 张翀, 张宝英, 马建富, 郭娜, 白苇, 方爱国, 杨志敏, 李源. 盐胁迫对燕麦生长及生理指标的影响[J]. 作物杂志, 2024, (6): 140–146
[9] 鄂利锋, 徐金崇, 陈修斌, 权建华, 华军, 尹丽娟, 王舜奇, 赵文勤. 外源硅对盐胁迫下娃娃菜种子萌发及幼苗生理特性的影响[J]. 作物杂志, 2024, (6): 212–217
[10] 马丽娜, 魏玉明, 文莉芳, 张学俭, 杨钊, 黄杰, 张圣昌, 李小雨, 刘欢, 杨发荣. 云南元谋地区22份藜麦种质的农艺性状及营养品质分析[J]. 作物杂志, 2024, (6): 47–54
[11] 侯钰晨, 庞春花, 张永清, 康书瑜, 毋悦悦, 闫晶蓉, 王嘉祺. 施用生物炭与氮肥对盐碱胁迫下藜麦幼苗生理生长特性的影响[J]. 作物杂志, 2024, (4): 240–246
[12] 顾怀应, 胡诗钦, 赵晴, 刘长华, 孟丽君. 根际微生物增强水稻耐盐性研究进展[J]. 作物杂志, 2024, (4): 8–13
[13] 刘建霞, 王文庆, 薛乃雯, 郭绪虎, 马赛雅, 朱国芳, 温日宇. 14个不同产地藜麦种质染色体核型分析[J]. 作物杂志, 2024, (3): 82–89
[14] 合佳敏, 张永清, 张萌, 梁萍, 王丹, 严翻翻. 烯效唑浸种对盐碱胁迫下藜麦农艺性状及生理特性的影响[J]. 作物杂志, 2024, (2): 234–241
[15] 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 65–72
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!