作物杂志,2025, 第6期: 100111 doi: 10.16035/j.issn.1001-7283.2025.06.013
张业猛1,2(
), 卢柯欣1, 毛文钰1, 张晓燕1, 李文静1, 杨修1
Zhang Yemeng1,2(
), Lu Kexin1, Mao Wenyu1, Zhang Xiaoyan1, Li Wenjing1, Yang Xiu1
摘要:
为分析藜麦LEA基因家族的理化性质、染色体分布、基因结构、蛋白保守基序、物种间共线性及表达模式,利用生物信息学方法对藜麦LEAs进行全基因组鉴定。结果显示,在藜麦基因组中共鉴定到64个LEA基因家族成员,分属7个亚组,分布于13条染色体上,同一亚组的成员具有相似的基因结构和保守基序。种内共线性分析发现,64个LEA基因存在20个重复基因对;种间共线性分析发现,其与豆科植物之间具有高度的进化保守性。LEA基因的启动子区域存在多种激素和非生物胁迫相关的作用元件,其中46个LEA基因受盐胁迫诱导表达,通过GO注释发现主要参与解剖结构发育、根系发育、防御响应和生殖系统发育等生物学过程,各亚组基因发挥不同作用以提升藜麦盐胁迫耐受性。
| [1] |
Miyazaki K, Ohkubo Y, Yasui H, et al. Overexpression of rice OsLEA5 relieves the deterioration in seed quality caused by high- temperature stress. Plant Biotechnology, 2021, 38(3):367-371.
doi: 10.5511/plantbiotechnology.21.0603a pmid: 34782824 |
| [2] |
Vidović M, Battisti I, Pantelić A, et al. Desiccation tolerance in Ramonda serbica panc.: an integrative transcriptomic, proteomic, metabolite and photosynthetic study. Plants, 2022, 11(9):1199.
doi: 10.3390/plants11091199 |
| [3] |
Dure L Ⅲ, Greenway S C, Galau G A. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 1981, 20(14):4162-4168.
doi: 10.1021/bi00517a033 pmid: 7284317 |
| [4] |
Huang R L, Xiao D, Wang X, et al. Genome-wide identification,evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.). BMC Plant Biology, 2022, 22(1):155.
doi: 10.1186/s12870-022-03462-7 |
| [5] |
Jia C P, Guo B, Wang B K, et al. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. BMC Plant Biology, 2022, 22(1):596.
doi: 10.1186/s12870-022-03953-7 |
| [6] |
Singh K K, Graether S P. The in vitro structure and functions of the disordered late embryogenesis abundant three proteins. Protein Science, 2021, 30(3):678-692.
doi: 10.1002/pro.4028 pmid: 33474748 |
| [7] | Furuki T, Sakurai M. Group 3 LEA protein model peptides protect enzymes against desiccation stress. Acta Biochimica et Biophysica Sinica, 2016, 1864(9):1237-1243. |
| [8] |
Nadarajah K K. ROS homeostasis in abiotic stress tolerance in plants. International Journal of Molecular Sciences. 2020, 21(15):5208.
doi: 10.3390/ijms21155208 |
| [9] |
Zhou C C, Niu S H, El-Kassaby Y A, et al. Genome-wide identification of late embryogenesis abundant protein family and their key regulatory network in Pinus tabuliformis cold acclimation. Tree Physiology, 2023, 43(11):1964-1985.
doi: 10.1093/treephys/tpad095 |
| [10] |
Yang Z F, Mu Y H, Wang Y Q, et al. Characterization of a novel TtLEA2 gene from Tritipyrum and its transformation in wheat to enhance salt tolerance. Frontiers in Plant Science, 2022, 13:830848.
doi: 10.3389/fpls.2022.830848 |
| [11] |
Cheng Z H, Zhang X M., Yao W J. et al. Genome-wide search and structural and functional analyses for late embryogenesis- abundant (LEA) gene family in poplar. BMC Plant Biology, 2021, 21(1):110.
doi: 10.1186/s12870-021-02872-3 |
| [12] |
Hinojosa L, González J, Barrios-Masias F, et al. Quinoa abiotic stress responses: a review. Plants, 2018, 7(4):106.
doi: 10.3390/plants7040106 |
| [13] |
Younis I Y, Sedeek M S, Essa A F, et al. Exploring geographic variations in quinoa grains: unveiling anti-alzheimer activity via GC-MS, LC-QTOF-MS/MS, molecular networking, and chemometric analysis. Food Chemistry, 2025, 465:141918.
doi: 10.1016/j.foodchem.2024.141918 |
| [14] |
Jarvis D E, Ho Y S, Lightfoot D J, et al. The genome of Chenopodium quinoa. Nature, 2017, 542:307-312.
doi: 10.1038/nature21370 |
| [15] |
Zhao Y Y, Hao Y P, Dong Z Y, et al. Identification and expression analysis of LEA gene family members in pepper (Capsicum annuum L.). FEBS Open Bio, 2023, 13(12):2246-2262.
doi: 10.1002/feb4.v13.12 |
| [16] | 贾冰晨, 王宇, 张东亮, 等. 藜麦内参基因筛选及盐胁迫相关基因表达分析. 烟台大学学报(自然科学与工程版), 2020, 33(3):283-288. |
| [17] |
Zhao X X, Wang S Y, Guo F G, et al. Genome-wide identification of polyamine metabolism and ethylene synthesis genes in Chenopodium quinoa Willd. and their responses to low-temperature stress. BMC Genomics, 2024, 25(1):370.
doi: 10.1186/s12864-024-10265-7 |
| [18] |
Wang Q, Lei X J, Wang Y H, et al. Genome-wide identification of the LEA gene family in Panax ginseng: evidence for the role of PgLEA2-50 in plant abiotic stress response. Plant Physiology and Biochemistry, 2024, 212:108742.
doi: 10.1016/j.plaphy.2024.108742 |
| [19] |
Chen Y K, Li C H, Zhang B, et al. The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response: a comprehensive expression analysis of potato (Solanum tuberosum). Genes, 2019, 10(2):148.
doi: 10.3390/genes10020148 |
| [20] |
Li Y F, Xu Y H, Ma Z W. Comparative analysis of the exon- intron structure in eukaryotic genomes. Yangtze Medicine, 2017, 1(1):50-64.
doi: 10.4236/ym.2017.11006 |
| [21] |
Hibshman J D, Goldstein B. LEA motifs promote desiccation tolerance in vivo. BMC Biology, 2021, 19(1):263.
doi: 10.1186/s12915-021-01176-0 pmid: 34903234 |
| [22] |
Chen Y, Shen J, Zhang L, et al. Nuclear translocation of OsMFT 1 that is impeded by OsFTIP1 promotes drought tolerance in rice. Molecular Plant, 2021, 14(8):1297-1311.
doi: 10.1016/j.molp.2021.05.001 |
| [23] |
Lu Y, Sun J, Yang Z M, et al. Genome-wide identification and expression analysis of glycine-rich RNA-binding protein family in sweet potato wild relative Ipomoea trifida. Gene, 2019, 686:177-186.
doi: S0378-1119(18)31187-9 pmid: 30453066 |
| [24] |
Hu M Q, Li Z Q, Lin X J, et al. Comparative analysis of the LEA gene family in seven Ipomoea species, focuses on sweet potato (Ipomoea batatas L.). BMC Plant Biology, 2024, 24:1256.
doi: 10.1186/s12870-024-05981-x |
| [25] |
Jia J S, Ge N, Wang Q Y, et al. Genome-wide identification and characterization of members of the LEA gene family in Panax notoginseng and their transcriptional responses to dehydration of recalcitrant seeds. BMC Genomics, 2023, 24(1):126.
doi: 10.1186/s12864-023-09229-0 |
| [26] |
Zhang Y J, Fan N N, Wen W W, et al. Genome-wide identification and analysis of LEA_2 gene family in alfalfa (Medicago sativa L.) under aluminum stress. Frontiers in Plant Science, 2022, 13:976160.
doi: 10.3389/fpls.2022.976160 |
| [27] | Liu S Y, Zhang L, Sang Y P, et al. Demographic history and natural selection shape patterns of deleterious mutation load and barriers to introgression across Populus genome. Molecular Biology and Evolution, 2022, 39(2):msac008. |
| [1] | 陈奕, 陈潇, 张茂星, 李静, 常静静, 李嘉炜, 林海晴, 陈兴平, 邓晓亮, 谢大森, 郭少龙, 沈仲灯, 张白鸽. 不同冬瓜品种对低盐胁迫的响应及其耐盐性综合评价[J]. 作物杂志, 2025, (6): 5866 |
| [2] | 滕文, 叶凡, 周舟, 王屿乐, 刘立军. 小麦和油菜秸秆还田处理对盐胁迫下水稻产量和品质的影响[J]. 作物杂志, 2025, (5): 1118 |
| [3] | 闫晶蓉, 庞春花, 张永清, 毋悦悦, 侯钰晨, 王嘉祺, 乔曼. 脱硫石膏与腐植酸配施对盐碱地土壤及藜麦生长的影响[J]. 作物杂志, 2025, (5): 4753 |
| [4] | 王兖薇, 武俊喜, 汪艳, 牟涛, 朗卓玛, 苗彦军. 盐碱胁迫对异株荨麻种子萌发的影响[J]. 作物杂志, 2025, (5): 6773 |
| [5] | 李小雨, 黄杰, 杨钊, 柴继宽, 杨发荣, 魏玉明, 刘文瑜, 拜伟俊. 基于AHP法的观赏藜麦综合评价体系的建立与应用[J]. 作物杂志, 2025, (3): 7077 |
| [6] | 张圣昌, 魏玉明, 马丽娜, 杨钊, 刘文瑜, 黄杰, 刘欢, 杨发荣. 种植密度和施肥对饲用型藜麦生长特性的影响[J]. 作物杂志, 2025, (2): 128134 |
| [7] | 景茂雅, 张子玉, 张萌, 合佳敏, 严翻翻, 高艳梅, 张永清. 水杨酸浸种对盐胁迫藜麦种子萌发及幼苗生长的影响[J]. 作物杂志, 2025, (1): 194201 |
| [8] | 李峰, 高宏云, 张翀, 张宝英, 马建富, 郭娜, 白苇, 方爱国, 杨志敏, 李源. 盐胁迫对燕麦生长及生理指标的影响[J]. 作物杂志, 2024, (6): 140146 |
| [9] | 鄂利锋, 徐金崇, 陈修斌, 权建华, 华军, 尹丽娟, 王舜奇, 赵文勤. 外源硅对盐胁迫下娃娃菜种子萌发及幼苗生理特性的影响[J]. 作物杂志, 2024, (6): 212217 |
| [10] | 马丽娜, 魏玉明, 文莉芳, 张学俭, 杨钊, 黄杰, 张圣昌, 李小雨, 刘欢, 杨发荣. 云南元谋地区22份藜麦种质的农艺性状及营养品质分析[J]. 作物杂志, 2024, (6): 4754 |
| [11] | 侯钰晨, 庞春花, 张永清, 康书瑜, 毋悦悦, 闫晶蓉, 王嘉祺. 施用生物炭与氮肥对盐碱胁迫下藜麦幼苗生理生长特性的影响[J]. 作物杂志, 2024, (4): 240246 |
| [12] | 顾怀应, 胡诗钦, 赵晴, 刘长华, 孟丽君. 根际微生物增强水稻耐盐性研究进展[J]. 作物杂志, 2024, (4): 813 |
| [13] | 刘建霞, 王文庆, 薛乃雯, 郭绪虎, 马赛雅, 朱国芳, 温日宇. 14个不同产地藜麦种质染色体核型分析[J]. 作物杂志, 2024, (3): 8289 |
| [14] | 合佳敏, 张永清, 张萌, 梁萍, 王丹, 严翻翻. 烯效唑浸种对盐碱胁迫下藜麦农艺性状及生理特性的影响[J]. 作物杂志, 2024, (2): 234241 |
| [15] | 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 6572 |
|
||