作物杂志,2025, 第6期: 216–224 doi: 10.16035/j.issn.1001-7283.2025.06.027

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同供磷水平和品种对工业大麻形态生理特征的影响

董晓慧1(), 景玉良1(), 刘立超1, 王翠玲2, 张利国3, 孙露宏4   

  1. 1 黑龙江省农业科学院绥化分院, 152000, 黑龙江绥化
    2 黑龙江省农业科学院农产品质量安全研究所, 150000, 黑龙江哈尔滨
    3 黑龙江省农业科学院经济作物研究所, 150000, 黑龙江哈尔滨
    4 桦川县农产品质量检测中心, 154000, 黑龙江佳木斯
  • 收稿日期:2024-05-23 修回日期:2024-06-13 出版日期:2025-12-15 发布日期:2025-12-12
  • 通讯作者: 景玉良,研究方向为农作物栽培与育种,E-mail:jyl7007@163.com
  • 作者简介:董晓慧,研究方向为农作物栽培育种,E-mail:252670936@qq.com
  • 基金资助:
    黑龙江省农业科技创新跨越工程——经济作物突破性新品种选育及产业化应用(GX23GG04)

Effects of Different Phosphorus Supply Levels and Varieties on Morphological and Physiological Characteristics in Industrial Hemp

Dong Xiaohui1(), Jing Yuliang1(), Liu Lichao1, Wang Cuiling2, Zhang Liguo3, Sun Luhong4   

  1. 1 Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua 152000, Heilongjiang, China
    2 Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150000, Heilongjiang, China
    3 Economic Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150000, Heilongjiang, China
    4 Huachuan County Agricultural Products Quality Inspection Center, Jiamusi 154000, Heilongjiang, China
  • Received:2024-05-23 Revised:2024-06-13 Online:2025-12-15 Published:2025-12-12

摘要:

以3个工业大麻品种(Mountain Mango、Victory Haze和Rewined S1)为试验材料,采用随机完全区组设计,设置4个不同供磷水平(0、40、80和120 mg/kg),研究了不同供磷水平和品种对工业大麻的生长、根系形态、生理指标、根际羧酸盐渗出、养分吸收和磷利用率的影响。结果表明,工业大麻的生长、根系形态、生理指标、养分吸收和磷利用率受品种和不同供磷水平的影响较大。在缺磷条件下,工业大麻根际主要释放柠檬酸盐,随着供磷水平的增加逐渐转向苹果酸盐渗出。Mountain Mango和Rewined S1在维持光合作用、生长形态和生理适应方面存在差异。Mountain Mango的叶片叶绿素含量较高,根长较长,而Rewined S1的细胞间CO2浓度较高,茎长较长。综上,Mountain Mango和Rewined S1随着供磷水平的升高具有较高的茎生物量、根长、根表面积和磷利用率,而Victory Haze的茎长、根系形态、柠檬酸盐和磷利用率均比较适中。

关键词: 工业大麻, 供磷水平, 生长发育, 根系形态, 养分吸收, 磷利用率

Abstract:

Using three varieties of industrial hemp (Mountain Mango, Victory Haze, and Rewined S1) as experimental materials, a randomized complete block design was conducted with four different levels of phosphorus supply (0, 40, 80, and 120 mg/kg). The effects of different phosphorus supply levels and varieties on growth, root morphology, physiological indicators, rhizosphere carboxylate exudation, nutrient uptake and phosphorus utilization efficiency were investigated. The results showed that the growth, root morphology, physiological indicators, nutrient uptake and phosphorus utilization efficiency of industrial hemp were strongly influenced by varieties and level of phosphorus supply. Under phosphorus-deficient conditions, the rhizosphere of industrial hemp mainly released citrate, which gradually shifted to malate exudation with the increase of phosphorus supply. Mountain Mango and Rewined S1 differed in maintaining photosynthesis, growth morphology and physiological adaptations. Mountain Mango had higher leaf chlorophyll content and longer root length, while Rewined S1 had higher intercellular CO2 concentrations and larger stem length. In conclusion, Mountain Mango and Rewined S1 had higher stem biomass, root length, root surface area, and phosphorus utilization efficiency with the increase of phosphorus supply, while Victory Haze had more moderate stem length, root morphology, citrate, and phosphorus utilization efficiency.

Key words: Industrial hemp, Phosphorus supply level, Growth and development, Root morphology, Nutrient uptake, Phosphorus utilization efficiency

表1

以品种和供磷水平为主要因素的检测参数方差分析

项目
Item
参数
Parameter
品种
Variety
供磷水平
P supply level
品种×供磷水平
Variety×P supply level
生长和生物量Growth and biomass 茎干重 (g) 0.015* <0.001*** 0.111ns
根干重 (g) 0.070ns <0.001*** 0.528ns
茎长 (cm) <0.001*** <0.001*** <0.001***
根系形态Root morphology 根长 (cm) 0.017* <0.001*** 0.234ns
细根长 (cm) 0.017* <0.001*** 0.234ns
粗根长 (cm) 0.043* <0.001*** 0.047*
根表面积 (cm2) 0.004** <0.001*** 0.155ns
生理指标Physiological indicator SPAD 0.012* 0.038* 0.274ns
Pn [μmol CO2/(m2·s)] 0.278ns 0.020* 0.942ns
Gs [mol H2O/(m2·s)] 0.340ns 0.042* 0.913ns
Ci (μmol CO2/mol) 0.028** 0.376ns 0.873ns
根际羧酸盐渗出量
Rhizosphere carboxylate exudation
柠檬酸盐渗出量 (μmol/g) 0.045* <0.001*** 0.206ns
苹果酸盐渗出量 (μmol/g) 0.461ns 0.047* 0.773ns
福马酸盐渗出量 (μmol/g) 0.234ns 0.580ns 0.762ns
草酸盐渗出量 (μmol/g) 0.890ns 0.252ns 0.691ns
丙酮酸盐渗出量 (μmol/g) 0.439ns 0.350ns 0.628ns
养分吸收Nutrient uptake 茎氮浓度 (mg/g) 0.135ns <0.001*** 0.125ns
茎磷浓度 (mg/g) 0.018* <0.001*** 0.229ns
茎钾浓度 (mg/g) 0.256ns <0.001*** 0.123ns
茎氮含量 (mg) 0.989ns <0.001*** 0.631ns
茎磷含量 (mg) 0.112ns <0.001*** 0.071ns
茎钾含量 (mg) 0.213ns <0.001*** 0.290ns
茎氮磷比 0.030* <0.001*** 0.204ns
磷利用率Phosphorus utilization efficiency 农艺磷使用率 (g DM/g Pf) 0.016* <0.001*** 0.816ns
磷吸收率 (g Pc/g Pf) 0.033* <0.001*** 0.026*
磷利用率 (g DM/g Pc) 0.005** <0.001*** 0.090ns

表2

品种和供磷水平对工业大麻茎和根干重的影响

指标
Index
品种Variety 供磷水平P supply level (mg/kg)
Mountain Mango Victory Haze Rewined S1 P0 P40 P80 P120
茎干重Stem dry weight (g) 3.4ab 2.9b 3.7a 0.3c 3.7b 4.8a 5.3a
根干重Root dry weight (g) 0.6a 0.5a 0.6a 0.2b 0.7a 0.9a 0.9a

图1

品种和供磷水平的交互作用对茎长的影响 不同小写字母表示差异显著(P < 0.05)。下同。

表3

品种和供磷水平对工业大麻根系形态的影响

指标
Index
品种Variety 供磷水平P supply level (mg/kg)
Mountain Mango Victory Haze Rewined S1 P0 P40 P80 P120
根长Root length (cm) 5312.0a 3372.0b 5056.0ab 701.0b 5672.0a 6017.0a 5838.0a
细根长Fine root length (cm) 5285.0a 3347.0b 5029.0ab 699.0b 5665.0a 6009.0a 5826.0a
根表面积Root surface area (cm2) 488.6a 281.0b 447.4a 63.1b 480.1a 536.4a 515.5a

图2

品种和供磷水平的交互作用对粗根长的影响

表4

品种和供磷水平对工业大麻生理指标的影响

指标
Index
品种Variety 供磷水平P supply level (mg/kg)
Mountain Mango Victory Haze Rewined S1 P0 P40 P80 P120
SPAD 50.2a 41.9b 42.7b 40.1b 44.0ab 48.9a 44.5ab
Pn [μmol CO2/(m2·s)] 7.2 7.6 5.6 9.2a 8.1ab 4.5b 7.2ab
Gs [mol H2O/(m2·s)] 0.1 0.2 0.1 0.2ab 0.1ab 0.1b 0.2a
Ci (μmol CO2/mol) 272b 288ab 301a 275 261 264 281

表5

品种和供磷水平对工业大麻羧酸盐渗出量的影响

指标
Index
品种Variety 供磷水平P supply level (mg/kg)
Mountain Mango Victory Haze Rewined S1 P0 P40 P80 P120
柠檬酸盐Citrate (μmol/g) 18.3b 35.1a 24.6ab 78.3a 16.4b 6.2b 6.7b
苹果酸盐Malate (μmol/g) 105 179 132 12.1b 199a 178ab 142ab
福马酸盐Fumarate (μmol/g) 0.8 1.2 0.8 0.8 1.2 0.9 0.7
草酸盐Oxalate (μmol/g) 30.5 36.4 33.9 19.4 29.7 40.1 45.8
丙酮酸盐Pyruvate (μmol/g)) 0.3 0.4 0.3 0.3 0.4 0.4 0.3

图3

品种和供磷水平的交互作用对根际pH的影响

表6

品种和供磷水平对工业大麻养分吸收的影响

指标
Index
品种Variety 供磷水平P supply level (mg/kg)
Mountain Mango Victory Haze Rewined S1 P0 P40 P80 P120
茎氮浓度Stem N concentration (mg/g) 27.0 29.5 26.1 40.5a 24.5b 23.6b 22.2b
茎磷浓度Stem P concentration (mg/g) 2.2b 2.8a 2.4ab 1.6c 2.2bc 2.4ab 2.7a
茎钾浓度Stem K concentration (mg/g) 25.1 26.7 24.4 30.0a 26.9ab 22.6bc 21.3c
茎氮含量Stem N content (mg) 75.2 75.1 74.8 8.5d 87.1c 101a 98a
茎磷含量Stem P content (mg) 7.9 8.2 8.7 0.4d 7.3c 11.9b 13.5a
茎钾含量Stem K content (mg) 79.7 73.9 76.8 6.1c 93.7b 103a 100ab
茎氮磷比Stem N:P ratio 15.1a 13.3ab 12.8b 25.2a 12.5b 9.1c 7.7c

表7

品种和供磷水平对工业大麻磷利用率的影响

指标
Index
品种Variety 供磷水平P supply level (mg/kg)
Mountain Mango Victory Haze Rewined S1 P40 P80 P120
农艺磷使用率APUE (g DM/g Pf) 62.5ab 52.4b 66.6a 84.1a 57.3b 42.7c
磷利用率PUtE (g DM/g Pc) 472.0a 361.0b 448.0a 505.0a 404.0b 375.0b

图4

品种和供磷水平的交互作用对磷利用率的影响

[1] Visković J, Zheljazkov V D, Sikora V, et al. Industrial hemp (Cannabis sativa L.)agronomy and utilization: a review. Agronomy, 2023, 13(3):931.
doi: 10.3390/agronomy13030931
[2] Verlinden M S, AbdElgawad H, Ven A, et al. Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi. Biogeosciences, 2022, 19(9):2353-2364.
doi: 10.5194/bg-19-2353-2022
[3] Kaur G, Kander R. The sustainability of industrial hemp: a literature review of its economic, environmental, and social sustainability. Sustainability, 2023, 15(8):6457.
doi: 10.3390/su15086457
[4] Liu H L, Zhang B, Huang J C, et al. Prospects of blockchain technology in China’s industrial hemp industry. Journal of Natural Fibers, 2023, 20(1):2160406.
doi: 10.1080/15440478.2022.2160406
[5] 郭丽. 东北黑土区工业大麻种植对土壤微生物群落结构及多样性的影响. 哈尔滨:东北林业大学, 2022.
[6] Bechtaoui N, Rabiu M K, Raklami A, et al. Phosphate-dependent regulation of growth and stresses management in plants. Frontiers in Plant Science, 2021, 12:679916.
doi: 10.3389/fpls.2021.679916
[7] Chen G, Li Y, Jin C, et al. Physiological and morphological responses of hydroponically grown pear rootstock under phosphorus treatment. Frontiers in Plant Science, 2021, 12:696045.
doi: 10.3389/fpls.2021.696045
[8] Simpson R J, Oberson A, Culvenor R A, et al. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant and Soil, 2011, 349(1/2):89-120.
doi: 10.1007/s11104-011-0880-1
[9] Farinon B, Molinari R, Costantini L, et al. The seed of industrial hemp (Cannabis sativa L.): nutritional quality and potential functionality for human health and nutrition. Nutrients, 2020, 12(7):1935.
doi: 10.3390/nu12071935
[10] Battisti M, Simpson R J, Stefanski A, et al. Phosphorus fertiliser value of sewage sludge ash applied to soils differing in phosphate buffering and phosphate sorption capacity. Nutrient Cycling in Agroecosystems, 2022, 124(2):279-297.
doi: 10.1007/s10705-022-10206-4
[11] Tshewang S, Rengel Z, Siddique K H M, et al. Growth, rhizosphere carboxylate exudation, and arbuscular mycorrhizal colonisation in temperate perennial pasture grasses varied with phosphorus application. Agronomy, 2020, 10(12):2017.
doi: 10.3390/agronomy10122017
[12] Heuer S, Gaxiola R, Schilling R, et al. Improving phosphorus use efficiency: a complex trait with emerging opportunities. The Plant Journal, 2017, 90(5):868-885.
doi: 10.1111/tpj.13423 pmid: 27859875
[13] Liu D. Root developmental responses to phosphorus nutrition. Journal of Integrative Plant Biology, 2021, 63(6):1065-1090.
doi: 10.1111/jipb.13090
[14] Kidd D R, Ryan M H, Haling R E, et al. Rhizosphere carboxylates and morphological root traits in pasture legumes and grasses. Plant and Soil, 2016, 402(1/2):77-89.
doi: 10.1007/s11104-015-2770-4
[15] Tshewang S, Rengel Z, Siddique K H M, et al. Microbial consortium inoculant increases pasture grasses yield in low- phosphorus soil by influencing root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation. Journal of the Science of Food and Agriculture, 2022, 102(2):540-549.
doi: 10.1002/jsfa.v102.2
[16] Overbeek W, Jeanne T, Hogue R, et al. Effects of microbial consortia, applied as fertilizer coating, on soil and rhizosphere microbial communities and potato yield. Frontiers in Agronomy, 2021, 3:714700.
doi: 10.3389/fagro.2021.714700
[17] Mediavilla V, Leupin M, Keller A. Influence of the growth stage of industrial hemp on the yield formation in relation to certain fibre quality traits. Industrial Crops and Products, 2001, 13(1):49-56.
doi: 10.1016/S0926-6690(00)00052-2
[18] 全国化学标准化技术委员会化学试剂分会(SAC/TC 63/SC 3). 化学试剂草酸盐测定通用方法:GB/T 9730-2007. 北京: 中国标准出版社, 2007.
[19] Simmons W J. Background absorption error in determination of copper in plants by flame atomic absorption spectrometry. Analytical Chemistry, 1978, 50(7):870-873.
doi: 10.1021/ac50029a014
[20] 邱化蛟, 许秀美, 冷寿慈, 等. 植物磷素利效率. 莱阳农学院学报, 2001, 18(2):116-120.
[21] Aubin M P, Seguin P, Vanasse A, et al. Industrial hemp response to nitrogen, phosphorus, and potassium fertilization. Crop,Forage & Turfgrass Management, 2015, 1(1):1-10.
[22] Vera C L, Malhi S S, Raney J P, et al. The effect of N and P fertilization on growth, seed yield and quality of industrial hemp in the Parkland region of Saskatchewan. Canadian Journal of Plant Science, 2004, 84(4):939-947.
doi: 10.4141/P04-022
[23] 木农布, 郭蓉, 杜光辉, 等. 不同光周期与肥料配比对设施内工业大麻生长发育的影响. 湖北农业科学, 2024, 63(9):147-155,203.
[24] Burgel L, Hartung J, Graeff-Hönninger S. Impact of different growing substrates on growth, yield and cannabinoid content of two Cannabis sativa L. genotypes in a pot culture. Horticulturae, 2020, 6(4):62.
doi: 10.3390/horticulturae6040062
[25] Pagnani G, Pellegrini M, Galieni A, et al. Plant growth- promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’ cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Industrial Crops and Products, 2018, 123:75-83.
doi: 10.1016/j.indcrop.2018.06.033
[26] Shiponi S, Bernstein N. Response of medical cannabis (Cannabis sativa L.) genotypes to P supply under long photoperiod: Functional phenotyping and the ionome. Industrial Crops and Products, 2021, 161:113154.
doi: 10.1016/j.indcrop.2020.113154
[27] Liu X, Zhang H, Wang J, et al. Increased CO2 concentrations increasing water use efficiency and improvement PSII function of mulberry seedling leaves under drought stress. Journal of Plant Interactions, 2019, 14(1):213-223.
doi: 10.1080/17429145.2019.1603405
[28] Richardson A E, Lynch J P, Ryan P R, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 2011, 349:121-156.
doi: 10.1007/s11104-011-0950-4
[29] Pearse S J, Veneklaas E J, Cawthray G, et al. Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytologist, 2007, 173(1):181-190.
doi: 10.1111/nph.2007.173.issue-1
[30] Hinsinger P, Plassard C, Tang C, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil, 2003, 248:43-59.
doi: 10.1023/A:1022371130939
[31] Iqbal S, Akhtar J, Saqib Z A, et al. Genotypic and species variability in carboxylate exudation of wheat (Triticum aestivum L.) and maize (Zea mays L.) in phosphorus deficiency. Pakistan Journal of Agricultural Sciences, 2020, 57(3):665-674.
[32] Cernusak L A, Winter K, Turner B L. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls. New Phytologist, 2010, 185(3):770-779.
doi: 10.1111/j.1469-8137.2009.03106.x pmid: 19968799
[1] 郭龙玉, 高欣梅, 福英, 张明伟, 王莹, 李乌日吉木斯, 乌日力格, 王英杰, 王靖宇, 杨凤婷, 谷艳茹, 全宇. 免疫诱抗剂ZNC对盐碱胁迫下燕麦幼苗生长发育及生理适应性的影响[J]. 作物杂志, 2025, (6): 203–209
[2] 伍露, 张皓, 杨霏云, 郭尔静, 斯林林, 曹凯, 程陈. WOFOST模型对江淮地区水稻生长发育模拟的适应性评价[J]. 作物杂志, 2025, (2): 215–221
[3] 李云霞, 杨佳蒴, 李洋洋, 向世鹏, 余金龙, 李斌, 郑维威, 刘璐. 不同移栽期对烟稻轮作烟区烤烟生长发育及产量和质量的影响[J]. 作物杂志, 2025, (2): 222–227
[4] 卢玉, 张妍妍, 陈海涛, 李满鑫, 白润娥, 雷彩燕. 外源亚精胺对烟粉虱―黄瓜互作的影响[J]. 作物杂志, 2025, (2): 256–264
[5] 李斐, 边少锋, 徐晨, 赵洪祥, 宋杭霖, 王芙臣, 庄妍. 坡耕地垄侧栽培对玉米生理特性及生长发育的影响[J]. 作物杂志, 2024, (6): 120–125
[6] 阳新月, 向颖, 陈子恒, 林茜, 邓振鹏, 周克友, 李明聪, 王季春. 有机质施用量对马铃薯产量及氮、磷、钾养分吸收利用的影响[J]. 作物杂志, 2024, (6): 153–161
[7] 赵希梅, 李琪, 严如玉, 向风云, 李雅琼, 李绪勋, 邹家龙, 李继福. 无人机飞播时期及播种方式对冬油菜产量、品质和经济效益的影响[J]. 作物杂志, 2024, (6): 179–185
[8] 胡娅晴, 李春情, 王冠, 徐江. 水稻BR受体突变株Fn189拔节期生长发育及碳代谢分析[J]. 作物杂志, 2024, (6): 218–225
[9] 王珊珊, 杨宇蕾, 刘飞虎, 杨阳, 汤开磊, 李涛, 牛龙江, 杜光辉. 多效唑喷施浓度和时期对工业大麻花叶产量和大麻二酚含量的影响[J]. 作物杂志, 2024, (5): 119–124
[10] 刘亚军, 逯昀, 王文静, 胡启国, 储凤丽, 李志杰. 有机肥与土壤调理剂对连作甘薯生长发育及土壤肥力的影响[J]. 作物杂志, 2024, (3): 168–174
[11] 肖敏, 郭浪, 崔璨, 程周琦, 刘玉午, 卓乐, 吴思, 易镇邪. 磷肥运筹对机插双季稻产量构成与养分吸收利用的影响[J]. 作物杂志, 2024, (2): 178–188
[12] 张磊, 董孔军, 何继红, 任瑞玉, 刘天鹏, 杨天育. 不同基因型糜子品种氮磷养分吸收差异研究[J]. 作物杂志, 2024, (2): 228–233
[13] 刘佳, 吴天一, 朱嘉宇, 邓绍珠, 张玉先, 梁喜龙, 金喜军. 烯效唑与褪黑素复配对红小豆萌发和根系形态的影响[J]. 作物杂志, 2024, (1): 180–186
[14] 刘晨, 杨明峰, 杨龙, 张楠, 于涛. 双行凹垄模式下宽窄行配置对烤烟上部叶生长发育及质量的影响[J]. 作物杂志, 2023, (5): 151–156
[15] 刘晓敏, 徐锐, 孙敬国, 赵凡冲, 司振兴, 梁郅哲, 许自成, 韩丹. 井窖深度与覆盖方式对窖内气热环境及烤烟生长和产量的影响[J]. 作物杂志, 2023, (5): 157–163
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!