作物杂志,2024, 第1期: 180–186 doi: 10.16035/j.issn.1001-7283.2024.01.024

所属专题: 杂粮作物

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

烯效唑与褪黑素复配对红小豆萌发和根系形态的影响

刘佳1,2(), 吴天一1, 朱嘉宇1, 邓绍珠1, 张玉先1,2, 梁喜龙1, 金喜军1,2()   

  1. 1黑龙江八一农垦大学农学院,163319,黑龙江大庆
    2国家杂粮工程技术研究中心,163319,黑龙江大庆
  • 收稿日期:2022-11-21 修回日期:2023-09-25 出版日期:2024-02-15 发布日期:2024-02-20
  • 通讯作者: 金喜军,研究方向为作物栽培学与耕作学,E-mail:shaoxiang1979@163.com
  • 作者简介:刘佳,研究方向为作物栽培学与耕作学,E-mail:l197209elieensbing@163.com
  • 基金资助:
    黑龙江省“揭榜挂帅”科技攻关项目(2021ZXJ05B011);黑龙江省农垦总局科技攻关项目(HNK135-02-10);黑龙江八一农垦大学研究生科研创新资助项目(YJSCX2021-Y57);农业农村部大豆机械化生产重点实验室资助

Effects of Uniconazole Combined with Melatonin on Germination and Root Morphology of Adzuki Bean

Liu Jia1,2(), Wu Tianyi1, Zhu Jiayu1, Deng Shaozhu1, Zhang Yuxian1,2, Liang Xilong1, Jin Xijun1,2()   

  1. 1College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2National Coarse Cereals Engineering Technology Research Center, Daqing 163319, Heilongjiang, China
  • Received:2022-11-21 Revised:2023-09-25 Online:2024-02-15 Published:2024-02-20
  • Contact: Jin Xijun

摘要:

为通过植物生长调节剂处理种子提升幼苗质量,设置了烯效唑浓度为2、4、8、16和32 mg/L,及上述浓度烯效唑与100 μmol/L褪黑素复配包衣处理,以无药剂溶液包衣为对照,研究不同浓度烯效唑及其与褪黑素复配对红小豆种子萌发、根系形态特征和抗氧化酶活性、糖类含量等的影响。结果表明,8 mg/L烯效唑(S8)及其与褪黑素复配(S8M)处理红小豆发芽指数较对照均显著提高,发芽率与对照无显著差异。随着烯效唑浓度提高,根系中果糖、可溶性糖和可溶性蛋白含量呈先上升后下降的趋势,均表现为S8最高,而根系蔗糖和淀粉含量则未表现出明显规律。与其他处理相比,S8及S8M处理更有利于同时促进抗氧化酶活性维持较高水平,显著提高根系活力。相关性分析表明,上述生理指标和根系形态指标存在显著和极显著相关关系。综合分析认为,8 mg/L烯效唑包衣及其复配100 μmol/L褪黑素包衣处理均可促进红小豆萌发和根系发育,有利于出苗整齐和壮苗形成。

关键词: 红小豆, 烯效唑, 褪黑素, 萌发, 根系形态建成

Abstract:

In order to improve the quality of seedlings by treating seeds with plant growth regulators, this study set the concentration of uniconazole at 2, 4, 8, 16 and 32 mg/L, and the above concentration of uniconazole and 100 μmol/L melatonin compound coating treatment, with no drug solution coating as the control, to study the effects of different concentrations of uniconazole and its combination with melatonin on seed germination, root morphological characteristics, antioxidant enzyme activities and sugar contents of adzuki bean. The results showed that the germination index of adzuki bean treated with 8 mg/L uniconazole (S8) and its combination with melatonin (S8M) were significantly higher than that of the control, and the germination rate was not significantly different compared with control. With the increase of uniconazole concentration, the contents of fructose, soluble sugar and soluble protein in roots showed a trend of first up and then down, all of which were the highest in S8 treatment, while the contents of sucrose and starch in roots did not show obvious regularity. Compared with other treatments, S8 and S8M treatments were more conducive to maintaining a high level of antioxidant enzyme activities and significantly improving root activity. Correlation analysis showed that there were significant and extremely significant correlations between the above physiological indexes and root morphological indexes. Comprehensive analysis showed that 8 mg/L uniconazole coating and its combination with 100 μmol/L melatonin coating could promote the germination and root development of adzuki bean, which was conducive to the emergence of neat and strong seedlings.

Key words: Adzuki bean, Uniconazole, Melatonin, Germination, Root morphogenesis

表1

包衣成分

处理Treatment 药剂及浓度Reagent and concentration
CK S3307 0 mg/L+MT 0 μmol/L
S2 S3307 2 mg/L
S2M S3307 2 mg/L+MT 100 μmol/L
S4 S3307 4 mg/L
S4M S3307 4 mg/L+MT 100 μmol/L
S8 S3307 8 mg/L
S8M S3307 8 mg/L+MT 100 μmol/L
S16 S3307 16 mg/L
S16M S3307 16 mg/L+MT 100 μmol/L
S32 S3307 32 mg/L
S32M S3307 32 mg/L+MT 100 μmol/L

图1

不同浓度烯效唑与褪黑素复配对红小豆萌发的影响 箱线图中箱体的上、下底分别代表数据的上四分位数(Q3)和下四分位数(Q1),箱体中横线为数据中位数(Q2);上、下边缘分别代表该组数据的最大值和最小值;点代表异常值;不同字母表示不同处理间差异显著(P<0.05)。下同。

图2

不同浓度烯效唑与褪黑素复配对红小豆根系糖和可溶性蛋白含量的影响

图3

不同浓度烯效唑与褪黑素复配对红小豆根系抗氧化酶活性的影响

图4

不同浓度烯效唑与褪黑素复配对红小豆根系形态和活力的影响

图5

生理指标与根系形态和活力相关性分析 SU:蔗糖含量;FR:果糖含量;SS:可溶性糖含量;ST:淀粉含量;SP:可溶性蛋白含量;RL:根长;RSA:根表面积;RD:根直径;RV:根体积;NLR:侧根数;RA:根系活力。“*”代表相关性显著(P < 0.05),“**”代表相关性极显著(P < 0.01),“***”代表相关性极显著(P < 0.001)。

[1] Guilfoyle T, Hagen G, Gazzarrini S, et al. Hormone cross-talk during seed germination. Essays in Biochemistry, 2015, 58:151-164.
doi: 10.1042/bse0580151 pmid: 26374893
[2] Pacifici E, Polverari L, Sabatini S. Plant hormone cross-talk: the pivot of root growth. Journal of Experimental Botany, 2015, 66 (4):1113-1121.
doi: 10.1093/jxb/eru534 pmid: 25628331
[3] Wan Y, Yan Y H, Yang W Y, et al. Responses of root growth and nitrogen transfer metabolism to uniconazole, a growth retardant, during the seedling stage of soybean under relay strip intercropping system. Communications in Soil Science and Plant Analysis, 2013, 44(22):3267-3280.
doi: 10.1080/00103624.2013.840838
[4] Yan Y H, Gong W Z, Yang W Y, et al. Seed treatment with uniconazole powder improves soybean seedling growth under shading by corn in relay strip intercropping system. Plant Production Science, 2010, 13(4):367-374.
doi: 10.1626/pps.13.367
[5] Yan Y H, Wan Y, Liu W G, et al. Influence of seed treatment with uniconazole powder on soybean growth, photosynthesis, dry matter accumulation after flowering and yield in relay strip intercropping system. Plant Production Science, 2015, 18(3):295-301.
doi: 10.1626/pps.18.295
[6] Zou J N, Jin X J, Zhang Y X, et al. Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress. Photosynthetica, 2019, 57(2):512-520.
doi: 10.32615/ps.2019.066
[7] Nawaz K, Chaudhary R, Sarwar A, et al. Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: Current status and future perspectives. Sustainability, 2020, 13(1):294.
doi: 10.3390/su13010294
[8] 韩毅强, 石英, 高亚梅, 等. 赤霉素及烯效唑对大豆形态、光合生理及产量的影响. 中国油料作物学报, 2018, 40(6):820-827.
[9] Zhang M C, Duan L S, Zhai Z X, et al. Effects of plant growth regulators on water deficit-induced yield loss in soybean. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 2004.
[10] 宫香伟, 刘春娟, 冯乃杰, 等. S3307和DTA-6对大豆不同冠层叶片光合特性及产量的影响. 植物生理学报, 2017, 53(10):1867-1876.
[11] 李宇, 赵松义, 聂明建, 等. 不同温度下烯效唑对烟草成苗素质的影响. 作物研究, 2014, 28(3):280-283.
[12] 李合生. 植物生理学实验指导. 北京: 高等教育出版社, 2000.
[13] 张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社, 2003.
[14] 刘丽琴, 张永清, 李鑫, 等. 烯效唑浸种对红小豆种子萌发及幼苗生长的影响. 江苏农业科学, 2017, 45(3):64-70.
[15] Yamaguchi S, Kamiya Y, Sun T P. Distinct cell‐specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. The Plant Journal, 2001, 28(4):443-453.
doi: 10.1046/j.1365-313X.2001.01168.x
[16] 陈贤, 杨勇, 刘凤权. 植物褪黑素的研究进展. 江苏农业科学, 2020, 48(24):17-24.
[17] Verbančič J, Lunn J E, Stitt M, et al. Carbon supply and the regulation of cell wall synthesis. Molecular Plant, 2018, 11(1):75-94.
doi: S1674-2052(17)30303-9 pmid: 29054565
[18] Mishra B S, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. Physiologia Plantarum, 2022, 174(1):e13546.
doi: 10.1111/ppl.v174.1
[19] Han Y Q, Gao Y M, Shi Y, et al. Genome-wide transcriptome profiling reveals the mechanism of the effects of uniconazole on root development in Glycine Max. Journal of Plant Biology, 2017, 60(4):387-403.
doi: 10.1007/s12374-017-0028-9
[20] Huangfu L, Zhang Z, Zhou Y, et al. Integrated physiological, metabolomic and transcriptomic analyses provide insights into the roles of exogenous melatonin in promoting rice seed germination under salt stress. Plant Growth Regulation, 2021, 95(1):19-31.
doi: 10.1007/s10725-021-00721-9
[21] Li G F, Ma J J, Tan M, et al. Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple. BMC Genomics, 2016, 17(1):1-17.
[22] Eljebbawi A, Guerrero Y D C R, Dunand C, et al. Highlighting reactive oxygen species as multitaskers in root development. Iscience, 2021, 24(1):101978.
doi: 10.1016/j.isci.2020.101978
[23] Lee Z H, Hirakawa T, Yamaguchi N, et al. The roles of plant hormones and their interactions with regulatory genes in determining meristem activity. International Journal of Molecular Sciences, 2019, 20(16):4065.
doi: 10.3390/ijms20164065
[24] Mase K, Tsukagoshi H. Reactive oxygen species link gene regulatory networks during Arabidopsis root development. Frontiers in Plant Science, 2021, 12:660274.
doi: 10.3389/fpls.2021.660274
[25] Smeekens S, Ma J, Hanson J, et al. Sugar signals and molecular networks controlling plant growth. Current Opinion in Plant Biology, 2010, 13(3):273-278.
doi: 10.1016/j.pbi.2009.12.002
[26] Poór P. Effects of salicylic acid on the metabolism of mitochondrial reactive oxygen species in plants. Biomolecules, 2020, 10(2):341.
doi: 10.3390/biom10020341
[1] 姜珊, 刘佳, 曹亮, 任春元, 金喜军, 张玉先. 外源褪黑素对干旱胁迫下红小豆幼苗生长和产量的影响[J]. 作物杂志, 2023, (4): 202–209
[2] 杨建, 汤华成, 曹冬梅, 崔航, 娄雨豪, 王冀菲, 张东杰. 氟磺胺草醚胁迫红小豆幼苗代谢物及通路分析[J]. 作物杂志, 2023, (4): 230–236
[3] 贺水玲, 赵霞, 吴明琦, 王东胜. 外源NO和H2S对谷子种子萌发的影响[J]. 作物杂志, 2023, (2): 138–144
[4] 王慧敏, 李明昊, 李云, 李菡, 王爽, 林小虎, 韩玉翠. 谷子品种(系)萌发期耐盐碱性鉴定及评价[J]. 作物杂志, 2023, (2): 57–66
[5] 张瑞栋, 梁晓红, 刘静, 南怀林, 王颂宇, 曹雄. 种子引发对干旱胁迫下高粱种子发芽及生理特性的影响[J]. 作物杂志, 2022, (6): 234–240
[6] 庞星月, 万林, 李素, 王宇航, 刘晨, 肖晓璐, 李心昊, 马霓. 外源SLs和纳米K2MoO4对干旱胁迫下油菜种子萌发的影响[J]. 作物杂志, 2022, (4): 214–220
[7] 崔亚男, 张曼, 张朋磊, 刘兵, 郝西, 臧秀旺. H2O2对吸胀冷害下花生种子萌发的影响[J]. 作物杂志, 2022, (4): 236–241
[8] 杨奥军, 常巧玲, 王鹏, 王芳, 高妍婷, 周广阔, 宋小佳, 韦恩成. 外源5-ALA对干旱胁迫下玉米种子萌发及幼苗生长的影响[J]. 作物杂志, 2022, (3): 194–199
[9] 卢军, 钱宇, 杨柳, 王勇, 陈玉蓝. 贮藏时间对烟草品种红花大金元种子萌发和生理特性的影响[J]. 作物杂志, 2022, (2): 211–214
[10] 杜昕, 李博, 毛鲁枭, 陈伟, 张玉先, 曹亮. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响[J]. 作物杂志, 2022, (1): 174–178
[11] 段雅娟, 曹士亮, 于滔, 李文跃, 杨耿斌, 王成波, 刘宝民, 刘长华. 玉米自交系萌发期耐盐性鉴定[J]. 作物杂志, 2022, (1): 213–219
[12] 张盼盼, 张洪鹏, 郭亚宁. 2种植物生长调节剂对糜子光合特性和产量的影响[J]. 作物杂志, 2021, (6): 159–163
[13] 李安, 舒健虹, 刘晓霞, 蒙正兵, 王小利, 赵德刚. 干旱胁迫下枯草芽孢杆菌对玉米种子抗旱性及生理指标的影响[J]. 作物杂志, 2021, (6): 217–223
[14] 任文斌, 王倩, 吴翠翠, 谢三刚. F型小麦雄性不育系和SQ-1诱导的不育植株花粉形态电镜扫描观察[J]. 作物杂志, 2021, (6): 46–50
[15] 陈忠诚, 金喜军, 李贺, 周伟鑫, 强斌斌, 刘佳, 张玉先. 外源褪黑素对红小豆生长、光合荧光特性及产量构成因素的影响[J]. 作物杂志, 2021, (6): 88–94
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!