作物杂志,2016, 第6期: 20–25 doi: 10.16035/j.issn.1001-7283.2016.06.004

• 专题综述 • 上一篇    下一篇

干湿交替灌溉对水稻产量、品质和土壤生物学性状的影响

蒋玉兰,陆凯明,夏仕明,陈璐,刘贺,刘立军   

  1. 扬州大学农学院/江苏省作物遗传生理重点实验室/农业部长江中下游作物生理生态与栽培重点开放实验室,225009,江苏扬州
  • 收稿日期:2016-06-21 修回日期:2016-10-17 出版日期:2016-12-15 发布日期:2018-08-26
  • 作者简介:蒋玉兰,硕士,主要从事作物栽培学与耕作学研究
  • 基金资助:
    国家自然科学基金(31371562,31171481);公益性行业(农业专项201203031-02);扬州大学大学生创新计划(x2015621)

Current Researches on Rice Yield,Grain Quality and Biological Traits of Soil under Alternate Wetting and Soil Drying Irrigation

Jiang Yulan,Lu Kaiming,Xia Shiming,Chen Lu,Liu He,Liu Lijun   

  1. College of Agronomy,Yangzhou University/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Crop Physiology,Ecology and Cultivation in Middle and Lower Reaches of Yangtze River,Ministry of Agriculture,Yangzhou 225009,Jiangsu,China
  • Received:2016-06-21 Revised:2016-10-17 Online:2016-12-15 Published:2018-08-26

摘要:

干湿交替灌溉是一项重要的水稻高产节水栽培技术。干湿交替改变了稻田土壤水分状况,从而会引起稻田土壤理化和生物学性状的改变,并直接或间接影响水稻的生长发育和产量形成。综述干湿交替灌溉对水稻产量、品质以及稻田土壤呼吸、土壤酶活性和微生物等生物学性状的影响,并提出未来干湿交替灌溉条件下稻田土壤生物学性状的研究重点,以期为水稻高产节水栽培和稻田土壤的定向调控提供理论依据。

关键词: 干湿交替灌溉, 水稻, 水稻土, 生物学性状

Abstract:

Alternate wetting and soil drying irrigation (AWD) is very important for the development of water-saving irrigation and the improvement of rice yield. The change of soil moisture in paddy field could lead to the changes of soil physical and chemical characters and biological characters, and affect the growth and yield of rice directly or indirectly. This paper reviewed the effects of AWD on rice yield, grain quality and biological traits of soil, including soil respiration, soil enzyme activity and microorganisms. Some research priorities on the effect of AWD on soil biological characteristics in the future were also put forward to provide the theoretical basis for high yielding, water saving and directional control of paddy soil in rice cultivation.

Key words: Alternate wetting and soil drying irrigation, Rice, Paddy soil, Soil biological properties

[1] Zhao L, Zhao C F, Zhou L H , et al. Analysis on rice production in China. Agricultural Science and Technology, 2016,17(1):78-80,105.
[2] 张荣萍, 马均, 王贺正 , 等. 不同灌水方式对水稻结实期一些生理性状和产量的影响. 作物学报, 2008,34(3):486-495.
doi: 10.3724/SP.J.1006.2008.00486
[3] 薛全义, 荆宇, 华玉凡 . 略论我国旱稻的生产及发展.中国稻米, 2002(4):5-7.
[4] 陈国林, 王人民, 王兆骞 . 不同灌溉方式对水稻产量与生理特性的影响. 生态学杂志, 1998,17(3):21-27.
doi: 10.1088/0256-307X/15/12/025
[5] 刘方平, 谢亨旺 . 水稻不同灌溉方式节水效益的对比分析. 江西农业学报, 2006,18(4):10-13.
doi: 10.3969/j.issn.1001-8581.2006.04.003
[6] Lampayan R M, Samoy-Pascual K C, Sibayan E B , et al. Effects of alternate wetting and drying (AWD) threshold level and plant seedling age on crop performance,water input,and water productivity of transplanted rice in Central Luzon,Philippines. Paddy and Water Environment, 2015,13(3):215-227.
doi: 10.1007/s10333-014-0423-5
[7] Yao F X, Huang J L, Cui K H , et al. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Research, 2012,126:16-22.
doi: 10.1016/j.fcr.2011.09.018
[8] 程建平, 曹凑贵, 蔡明历 , 等. 不同灌溉方式对水稻生物学特性与水分利用效率的影响. 应用生态学报, 2006,17(10):1859-1865.
[9] 张自常, 徐云姬, 褚光 , 等. 不同灌溉方式下的水稻群体质量. 作物学报, 2011,37(11):2011-2019.
doi: 10.3724/SP.J.1006.2011.02011
[10] 秦华东, 江立庚, 肖巧珍 , 等. 水分管理对免耕抛秧水稻根系生长及产量的影响. 中国水稻科学, 2013,27(2):209-212.
doi: 10.3969/j.issn.10017216.2013.02.015
[11] Kawata S, Soejima M . Effect of water management of paddy fields on the formation of superficial roots of rice. The Crop Science Society of Japan, 1977,46(1):24-36.
doi: 10.1626/jcs.46.24
[12] 丁汉卿, 赖聪玲, 沈宏 . 干湿交替和过氧化物对水稻根表铁膜及养分吸收的影响. 生态环境学报, 2015,24(12):1983-1988.
[13] 茆智 . 水稻节水灌溉及其对环境的影响. 中国工程科学, 2002,4(7):8-16.
[14] 周胜, 宋祥甫, 颜晓元 . 水稻低碳生产研究进展. 中国水稻科学, 2013,27(2):213-222.
doi: 10.3969/j.issn.10017216.2013.02.016
[15] Katayanagi N, Furukawa Y, Fumoto T , et al. Validation of the DNDC-Rice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Science and Plant Nutrition, 2012,58(3):360-372.
doi: 10.1080/00380768.2012.682955
[16] Wu J, Brookes P C . The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biology and Biochemistry, 2005,37(3):507-515.
doi: 10.1016/j.soilbio.2004.07.043
[17] 仝少伟, 时连辉, 刘登民 , 等. 不同有机堆肥对土壤性状及微生物生物量的影响. 植物营养与肥料学报, 2014,20(1):110-117.
doi: 10.11674/zwyf.2014.0112
[18] 许景钢, 孙涛, 李嵩 . 我国微生物肥料的研发及其在农业生产中的应用.作物杂志, 2016(1):1-6.
doi: 10.16035/j.issn.1001-7283.2016.01.001
[19] 陈惠哲, 朱德峰, 林贤青 , 等. 微生物肥对水稻产量及氮肥利用的影响. 核农学报, 2010,24(5):1051-1055.
[20] Belder P, Bouman B A M, Cabangon R , et al. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management , 2004,65(3):193-210.
doi: 10.1016/j.agwat.2003.09.002
[21] Won J G, Choi J S, Lee S P , et al. Water saving by shallow intermittent irrigation and growth of rice. Plant Production Science, 2005,8(4):487-492.
doi: 10.1626/pps.8.487
[22] 杨建昌, 袁莉民, 唐成 , 等. 结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响. 作物学报, 2005,31(8):1052-1057.
[23] 刘立军, 王康君, 卞金龙 , 等. 结实期干湿交替灌溉对籽粒蛋白质含量不同的转基因水稻的生理特性及产量的影响. 中国水稻科学, 2014,28(4):384-390.
doi: 10.3969/j.issn.10017216.2014.04.007
[24] Yang J C, Chang E H, Zhang W J , et al. Relationship between root chemical signals and grain quality of rice. Agricultural Sciences in China, 2007,6(1):47-57.
doi: 10.1016/S1671-2927(07)60016-9
[25] Zhang H, Li H W, Yuan L M , et al. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. Journal of Experimental Botany, 2012,63(1):215-227.
doi: 10.1093/jxb/err263
[26] 张自常, 李鸿伟, 陈婷婷 , 等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 中国农业科学, 2011,44(24):4988-4998.
doi: 10.3864/j.issn.0578-1752.2011.24.003
[27] 顾俊荣, 季红娟, 韩立宇 , 等. 不同水氮管理模式对粳稻籽粒结实和主要品质性状的影响.中国稻米, 2015(4):44-48.
doi: 10.3969/j.issn.1006-8082.2015.04.008
[28] 鲁杰, 刘宝忠, 周传远 , 等. 生物有机菌肥对水稻产量及稻米品质的影响. 中国农学通报, 2009,25(6):146-150.
[29] Singh J S, Gupta S R . Plant decomposition and soil respiration in terrestrial ecosystems. The Botanical Review, 1977,43(4):449-528.
doi: 10.1007/BF02860844
[30] Bouma T J, Bryla D R . On the assessment of root and soil respiration for soils of different textures:interactions with soil moisture contents and soil CO2 concentrations. Plant Soil, 2000,227(1-2):215-221.
doi: 10.1023/A:1026502414977
[31] 张静, 刘娟, 陈浩 , 等. 干湿交替条件下稻田土壤氧气和水分变化规律研究. 中国生态农业学报, 2014,22(4):408-413.
[32] 孟伟庆, 莫训强, 胡蓓蓓 , 等. 模拟干湿交替对湿地土壤呼吸及有机碳含量的影响. 土壤通报, 2015,46(4):910-915.
[33] 王君, 宋新山, 严登华 , 等. 多重干湿交替格局下土壤Birch效应的响应机制. 中国农学通报, 2013,29(27):120-125.
[34] Fierer N, Schimel J P . Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 2002,34(6):777-787.
doi: 10.1016/S0038-0717(02)00007-X
[35] 王同朝, 杜园园, 常晓 , 等. 垄作覆盖条件下灌溉方式与灌溉量对夏玉米田土壤呼吸的影响. 河南农业大学学报, 2010,44(3):238-242.
[36] 杨晶, 李凌浩 . 土壤呼吸及其测定法.植物杂志, 2003(5):36-37.
[37] Davidson E A, Verchot L V, Cattanio J H , et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 2000,48(1):53-69.
doi: 10.1023/A:1006204113917
[38] 陈书涛, 胡正华, 张勇 , 等. 陆地生态系统土壤呼吸时空变异的影响因素研究进展. 环境科学, 2011,32(8):2184-2192.
[39] 刘颖, 韩士杰, 胡艳玲 , 等. 土壤温度和湿度对长白松林土壤呼吸速率的影响. 应用生态学报, 2005,16(9):1581-1585.
[40] 陈荣荣, 刘全全, 王俊 , 等. 人工模拟降水条件下旱作农田土壤“Birch效应”及其响应机制. 生态学报, 2016,36(2):306-317.
doi: 10.5846/stxb201403120428
[41] 张红星, 王效科, 冯宗炜 , 等. 干湿交替格局下黄土高原小麦田土壤呼吸的温湿度模型. 生态学报, 2009,29(6):3028-3035.
[42] 刘岳燕 . 水分条件与水稻土壤微生物生物量、活性及多样性的关系研究. 杭州:浙江大学, 2009.
[43] Bell T H, Klironomos J N, Henry H A L . Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition. Soil Science Society of America Journal, 2010,74(3):820-828.
doi: 10.2136/sssaj2009.0036
[44] Brockett B F T, Prescott C E, Grayston S J . Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 2012,44(1):9-20.
doi: 10.1016/j.soilbio.2011.09.003
[45] Frankenberger W T, Dick W A . Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 1983,47(5):945-951.
doi: 10.2136/sssaj1983.03615995004700050021x
[46] Tiwari M B, Tiwari B K, Mishra R R . Enzyme activity and carbon dioxide evolution from upland and wetland rice soils under three agricultural practices in hilly regions. Biology and Fertility of Soils, 1989,7(4):359-364.
[47] 孙秀山, 封海胜, 万书波 , 等. 连作花生田主要微生物类群与土壤酶活性变化及其交互作用. 作物学报, 2001,27(5):617-621.
doi: 10.3321/j.issn:0496-3490.2001.05.010
[48] 徐雁, 向成华, 李贤伟 , 等. 土壤酶的研究概况. 四川林业科技, 2010,31(2):14-20.
doi: 10.3969/j.issn.1003-5508.2010.02.004
[49] Wang X C, Lu Q . Effect of waterlogged and aerobic incubation on enzyme activities in paddy soil. Pedosphere, 2006,16(4):532-539.
doi: 10.1016/S1002-0160(06)60085-4
[50] 崔萌, 李忠佩, 车玉萍 , 等. 不同水分状况下红壤水稻土中有机物料分解及酶活性的变化. 安徽农业科学, 2008,36(22):9634-9636.
[51] 万忠梅, 宋长春, 郭跃东 , 等. 毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应. 生态学报, 2008,28(12):5980-5986.
[52] 田幼华, 吕光辉, 杨晓东 , 等. 水盐胁迫对干旱区植物根际土壤酶活性的影响. 干旱区资源与环境, 2012,26(3):156-163.
[53] Van Gestel M, Merckx R, Vlassak K . Microbial biomass responses to soil drying and rewetting: The fate of fast-and slow-growing microorganisms in soils from different climates. Soil Biology and Biochemistry, 1993,25(1):109-123.
doi: 10.1016/0038-0717(93)90249-B
[54] 富宏霖, 王生荣, 韩士杰 , 等. 土壤干湿交替对长白山阔叶红松林土壤微生物活性与区系的影响. 东北林业大学学报, 2009,37(7):80-81,86.
doi: 10.3969/j.issn.1000-5382.2009.07.026
[55] Yao S H, Zhang B, Hu F . Soil biophysical controls over rice straw decomposition and sequestration in soil: The effects of drying intensity and frequency of drying and wetting cycles. Soil Biology and Biochemistry, 2011,43(3):590-599.
doi: 10.1016/j.soilbio.2010.11.027
[56] 刘艳, 孙文涛, 宫亮 , 等. 水分调控对水稻根际土壤及产量的影响. 灌溉排水学报, 2014,33(2):98-100.
[57] 赵利梅, 吴良欢, 李永山 , 等. 水稻强化栽培对稻田土壤生物学特性的影响. 土壤学报, 2009,46(2):321-325.
[58] 耿思敏 . 海河流域干旱对典型农田土壤生态系统演变的影响机理. 青岛:中国海洋大学, 2012.
doi: 10.7666/d.y2159823
[59] Schimel J P, Gulledge J M, Clein-Curley J S , et al .Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biology and Biochemistry, 1999,31(6):831-838.
doi: 10.1016/S0038-0717(98)00182-5
[60] Denef K, Six J, Bossuyt H , et al. Influence of dry-wet cycles on the interrelationship between aggregate,particulate organic matter,and microbial community dynamics. Soil Biology and Biochemistry, 2001,33(12-13):1599-1611.
doi: 10.1016/S0038-0717(01)00076-1
[61] 黄昌勇 . 土壤学. 北京:中国农业出版社, 2010.
[62] Song Y, Deng S P, Acosta-Martnez V . Characterization of redox-related soil microbial communities along a river floodplain continuum by fatty acid methyl ester (FAME) and 16S rRNA genes. Applied Soil Ecology, 2008,40(3):499-509.
doi: 10.1016/j.apsoil.2008.07.005
[63] Gordon H, Haygarth P M, Bardgett R D . Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biology and Biochemistry, 2008,40(2):302-311.
doi: 10.1016/j.soilbio.2007.08.008
[64] Alster C J, German D P, Lu Y , et al. Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biology and Biochemistry, 2013,64:68-79.
doi: 10.1016/j.soilbio.2013.03.034
[65] Kaisermann A, Maron P A, Beaumelle L , et al. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Applied Soil Ecology, 2015,86:158-164.
doi: 10.1016/j.apsoil.2014.10.009
[66] Griffiths R I, Whiteley A S, O'Donnell A G , et al.Physiological and community responses of established grassland bacterial populations to water stress. Applied and Environmental Microbiology, 2003,69(12):6961-6968.
doi: 10.1128/AEM.69.12.6961-6968.2003
[67] Bapiri A, Baath E, Rousk J . Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil. Microbial Ecology, 2010,60(2):419-428.
doi: 10.1007/s00248-010-9723-5 pmid: 20635180
[68] 梁如玉, 傅淡如, 李登煜 , 等. 水稻施用几种菌肥的根际效应和增产效果.土壤肥料, 1994(3):31-33.
[69] 张福锁, 申建波, 冯固 . 根际生态学-过程与调控. 北京: 中国农业大学出版社, 2009.
[1] 姬生栋 栗 鹏 李江伟 宋刘敏 刘苗苗 高狂龙 尹海庆. 水稻株系与亲本间灌浆期POD 酶谱及遗传效应分析[J]. 作物杂志, 2018, (5): 17–20
[2] 马孟莉 郑 云 周晓梅 张婷婷 张晓倩 卢丙越. 云南哈尼梯田红米地方品种遗传多样性分析[J]. 作物杂志, 2018, (5): 21–26
[3] 陈瑛瑛 王徐艺凌 朱宇涵 武 威 刘 涛 孙成明. 水稻穗部氮素含量高光谱估测研究[J]. 作物杂志, 2018, (5): 116–120
[4] 隋阳辉, 高继平 刘彩虹, 徐正进 王延波 赵海岩. 东北冷凉地区秸秆还田方式对水稻#br# 光合、干物质积累及氮素吸收的影响[J]. 作物杂志, 2018, (5): 137–143
[5] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48–52
[6] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 69–78
[7] 曾波. 近30年来我国水稻主要品种更新换代历程浅析[J]. 作物杂志, 2018, (3): 1–7
[8] 张莉,李赞堂,王士银,麻艳超,东方阳,李学勇,徐江. 水稻氮素吸收低效型突变体osnad1的生理和遗传分析[J]. 作物杂志, 2018, (3): 68–76
[9] 赫臣,郑桂萍,赵海成,陈立强,李红宇,吕艳东,宋江. 增施腐殖酸及减量施肥对盐碱地水稻穗部性状与产量的影响[J]. 作物杂志, 2018, (3): 129–134
[10] 崔勇. 稻田水旱轮作的研究进展[J]. 作物杂志, 2018, (3): 8–14
[11] 唐志强,董立强,李睿,张丽颖,何娜,李跃东. 氮素与土壤类型对水稻秧苗素质及养分吸收的影响[J]. 作物杂志, 2018, (3): 141–147
[12] 曾波,孙世贤,王洁. 我国水稻主要品种近30年来审定及推广应用概况[J]. 作物杂志, 2018, (2): 1–5
[13] 曲歌,陈争光,王雪. 基于近红外光谱与SIMCA和PLS-DA的水稻品种鉴别[J]. 作物杂志, 2018, (2): 166–170
[14] 王洁,曾波,雷财林,赵志超,王久林,程治军. 北方国家水稻区域试验近15年参试品种分析[J]. 作物杂志, 2018, (1): 71–76
[15] 袁珍贵,陈平平,郭莉莉,屠乃美,易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异[J]. 作物杂志, 2018, (1): 107–112
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .