作物杂志,2016, 第6期: 26–32 doi: 10.16035/j.issn.1001-7283.2016.06.005

• 专题综述 • 上一篇    下一篇

水稻氮高效吸收利用机制及栽培调控措施

陈颖,周振翔,周天阳,许志伟,王志琴,顾骏飞   

  1. 扬州大学农学院/扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心,225009,江苏扬州
  • 收稿日期:2016-08-31 修回日期:2016-10-29 出版日期:2016-12-15 发布日期:2018-08-26
  • 基金资助:
    国家973计划项目(2015CB150401);国家自然科学基金(31501254);江苏省自然科学基金(BK20140480);中国博士后基金(2014M550312,2015T80590);江苏省高校优势学科建设项目

Mechanisms of High Efficiency of N Uptake and Usage in Rice and Its Cultivation Practice

Chen Ying,Zhou Zhenxiang,Zhou Tianyang,Xu Zhiwei,Wang Zhiqin,Gu Junfei   

  1. College of Agronomy, Yangzhou University/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops,Yangzhou University,Yangzhou 225009,Jiangsu,China
  • Received:2016-08-31 Revised:2016-10-29 Online:2016-12-15 Published:2018-08-26

摘要:

氮素的大量施用不仅会造成资源的浪费还会造成环境的污染。水稻氮素的高效利用是实现资源高效利用,建立环境友好型农业的关键。从氮素高效吸收与利用的机制及其调控途径等角度进行阐述,一是根系对氮素的高效吸收,包括形态特征和生理特性对氮高效的响应;二是地上部对氮素的高效利用,包括光氮分布、氮代谢相关酶和氮代谢相关激素等方面;三是提高水稻氮高效的栽培调控途径,如秸秆还田、实地养分管理新技术和轻干湿交替灌溉等措施。并讨论分析目前氮素高效吸收面临的问题以及今后研究的重点。

关键词: 水稻, 氮高效利用效率, 根系, 冠层

Abstract:

A large amount of nitrogen application will not only cause a waste of resource but also cause environmental pollution. To improve the use efficiency of nitrogen is the key to achieve high use efficiency of resources and environmentally friend agriculture. This paper mainly discussed the mechanisms and metabolic control of N absorption and utilization: (1) the response of roots system to the absorption of nitrogen, including morphological and physiological characteristics; (2) the morphological and physiological characteristics of canopy in high N use efficient plants, including light and nitrogen distribution, enzymes related to nitrogen metabolism, hormones related to nitrogen metabolism; (3) the management and cultivation methods to improve nitrogen absorption and utilization, such as straw application, site-specific N management, alternate wetting and moderate soil drying. In the end, we prospected the progresses in high N absorption and utilization efficiency in rice research.

Key words: Rice, High nitrogen efficient utilization, Roots system, Canopy

表1

水稻氮高效的农艺和生理指标"

农艺和生理特性Agronomic and physiological characteristics 指数Index
子粒产量Grain yield (t/hm2) ≥9.5[60];≥7.24[63]
农艺N利用效率Agronomic N use efficiency (kg/kg) ≥19.5[60];≥16.04[63]
N吸收量N uptake (kg/hm2) ≥140.0[60]
N肥表观回收效率Apparent recovery efficiency of N fertilizer (%) ≥34.8[60]
内部N利用效率Internal N use efficiency (kg/kg) ≥67.0[60]
N素吸收利用率N recovery efficiency (%) ≥45.45[63]
N素生理利用率Physiological efficiency of applied N (kg/kg) ≥38.9[63]
N偏生产力Partial factor productivity of applied N (kg/kg) ≥48.24[63]
拔节期光合氮素利用效率Photosynthetic nitrogen-use efficiency at elongating stage [μmol/(mmol·leaf N·s)] ≥114[62]
拔节期气孔导度Stomatal conductance at elongating stage [mol H2O/(m2·s)]
>0.50[62]
抽穗期地上部干物重Shoot biomass at heading (t/hm2) 9.9~10.3[60]
开花期到成熟期作物生长速率Crop growth rate from panicle initiation to maturity [g/(m2·d)] ≥14.5[60]
抽穗期比叶氮Specific leaf N content at heading (g/m2) 2.2~2.3[60]
抽穗期光氮利用效率Photosynthetic nitrogen use efficiency at heading [μmol/(g·s)] ≥10.5[60]
抽穗期在土壤10.1~20.0cm土层的根系生物量Root biomass in 10.1-20.0cm soil layer at heading (g/m2) 44.5~46.5[60]
抽穗期总根长Root length at heading (km/m2) 24.2~26.5[60]
抽穗期单位土壤体积根总长Root length density at heading (cm/cm3) 12.8~14.2[60]
抽穗期根氧化活力Root oxidation activity at heading [μg α-NA(g·DW·h)] 450.0~500.0[60]
抽穗期茎秆中非结构性碳水化合物含量Nonstructural carbohydrate in the stem at heading (g/m2) ≥285.0[60]
子粒灌浆期间非结构性碳水化合物的再活化Nonstructural carbohydrate remobilization during grain filling (%) 57.5~58.5[60]
子粒灌浆速率Filled grains rate (%) 82.8~84.5[61]
单位面积总粒数Spikelets per area (粒/hm2) ≥4.0×108[61]
收获指数N harvest index (%) ≥68.34[63]
[1] 张耗, 薛亚光, 杨建昌 . 水稻高产与养分高效利用的限制因素与栽培技术.中国稻米, 2013(4):5-7.
doi: 10.3969/j.issn.1006-8082.2013.04.002
[2] 江立庚, 曹卫星 . 水稻高效利用氮素的生理机制及有效途径.中国水稻科学, 2002(3):64-67.
[3] Peng S B, Buresh R J, Huang J L , et al. Improving nitrogen fertilization in rice by site-specific N management:a review. Agronomy for Sustainable Development, 2010,30(3):649-656.
doi: 10.1051/agro/2010002
[4] Peng S B, Buresh R J, Huang J L , et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 2006,96(1):37-47.
doi: 10.1016/j.fcr.2005.05.004
[5] Zhang Z J, Chu G, Liu L J , et al. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Research, 2013,150(15):9-18.
doi: 10.1016/j.fcr.2013.06.002
[6] Xue Y G, Duan H, Liu L J , et al. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Science, 2013,53(1):271-284.
doi: 10.2135/cropsci2012.06.0360
[7] Zhang W F, Dou Z X, He P , et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(21):8375-8380.
doi: 10.1073/pnas.1210447110
[8] 徐优, 王学华 . 我国水稻氮肥高效利用的研究进展. 作物研究, 2014,28(5):564-569.
doi: 10.3969/j.issn.1001-5280.2014.05.26
[9] 张亚丽, 樊剑波, 段英华 , 等. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008,45(2):267-273.
doi: 10.3321/j.issn:0564-3929.2008.02.011
[10] 王小燕, 马国辉, 狄浩 , 等. 纳米增效尿素对水稻产量及氮肥农学利用率的影响. 植物营养与肥料学报, 2010,16(6):1479-1485.
doi: 10.11674/zwyf.2010.0625
[11] 薛亚光, 陈婷婷, 杨成 , 等. 中粳稻不同栽培模式对产量及其生理特性的影响. 作物学报, 2010,36(3):466-476.
doi: 10.3724/SP.J.1006.2010.00466
[12] Fitter A . Characteristics and functions of root systems.//Waisel Y,Eshel A,Kafkafi U.Plant Roots,the Hidden Half. New York:Marcel Dekker Inc, 2002: 15-32.
[13] Fitter A H . Roots as dynamic systems:the developmental ecology of roots and root systems.//Press M C,Scholes J D,Barker M G.Plant Physiological Ecology. London:Blackwell Scientific, 1999: 115-131.
doi: 10.5553/EJLR/138723702015017002005
[14] Inukai Y, Ashikari M, Kitano H . Function of the root system and molecular mechanism of crown root formation in rice. Plant and Cell Physiology, 2004,45(S):S17.
[15] Cassman K G, Dobermann A, Walters D T . Agroecosystems,nitrogen-use efficiency and nitrogen management, Ambio, 2002,31(2):132-140.
doi: 10.1579/0044-7447-31.2.132 pmid: 12078002
[16] 程建峰, 戴廷波, 荆奇 , 等. 不同水稻基因型的根系形态生理特性与高效氮素吸收. 土壤学报, 2007,44(2):266-272.
doi: 10.3321/j.issn:0564-3929.2007.02.011
[17] 魏海燕, 张洪程, 张胜飞 , 等. 不同水稻氮利用效率基因型的根系形态与生理指标研究. 作物学报, 2008,34(3):429-436.
doi: 10.3724/SP.J.1006.2008.00429
[18] Yang J C . Approaches to achieve high grain yield and high resource use efficiency in rice. Frontiers of Agricultural Science and Engineering, 2015,2(2):115-123.
doi: 10.15302/J-FASE-2015055
[19] 戢林, 李廷轩, 张锡洲 , 等. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012,45(23):4770-4781.
doi: 10.3864/j.issn.0578-1752.2012.23.003
[20] 杨建昌 . 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011,44(1):36-46.
doi: 10.3864/j.issn.0578-1752.2011.01.005
[21] 段英华, 张亚丽, 王松伟 , 等 .铵硝比(NH4+/NO3-)对不同氮素利用效率水稻的生理效应.南京农业大学学报 , 2007(3):73-77.
doi: 10.3321/j.issn:1000-2030.2007.03.014
[22] Kong Y, Wang Z, Chen J , et al. Effects of ethephon on aerenchyma formation in rice roots. Rice Science, 2009,16(3):210-216.
doi: 10.1016/S1672-6308(08)60081-5
[23] Guo S W, Chen G, Zhou Y , et al. Ammonium nutrition increases photosynthesis rate under water stress at early development stage of rice (Oryza sativa L.). Plant Soil, 2007,296(1-2):115-124.
doi: 10.1007/s11104-007-9302-9
[24] 肖焱波, 李文学, 段宗颜 , 等. 植物对硝态氮的吸收及其调控. 中国农业科技导报, 2002,4(2):56-59.
[25] 张亚丽, 段英华, 沈其荣 . 水稻对硝态氮响应的生理指标筛选. 土壤学报, 2004,41(4):571-576.
[26] 段英华, 张亚丽, 沈其荣 . 增硝营养对不同基因型水稻苗期吸铵和生长的影响. 土壤学报, 2005,42(2):260-265.
[27] Duan Y H, Zhang Y L, Ye L T , et al. Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Annals of Botany, 2007,99(6):1153-1160.
doi: 10.1093/aob/mcm051 pmid: 17428833
[28] 马雪峰, 高旻, 程治军 . 植物氮素吸收与利用的分子机制研究进展.作物杂志, 2013(4):32-38.
[29] 陈晓亚, 薛红卫 . 植物生理与分子生物学.北京: 高等教育出版社, 2012.
[30] Ranathunge K, El-Kereamy A, Gidda S , et al. OsAMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions . Journal of Experimental Botany, 2014,65(4):965-979.
doi: 10.1093/jxb/ert458
[31] Sonoda Y, Ikeda A, Saiki S , et al. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant and Cell Physiology, 2003,44(7):726-734.
doi: 10.1093/pcp/pcg083 pmid: 12881500
[32] 陆海燕, 李胜元, 唐仲 , 等. 超表达OsNRT2.3b促进水稻武育粳7号生长和提高籽粒产量. 分子植物育种, 2015,13(3):497-504.
doi: 10.13271/j.mpb.013.000497
[33] 张晓果, 王丹英, 计成林 , 等. 水稻氮素吸收利用研究进展. 中国稻米, 2015,21(5):13-19.
doi: 10.3969/j.issn.1006-8082.2015.05.003
[34] Chen J G, Zhang Y, Tan Y W , et al. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnology Journal, 2016,14(8):1705-1715.
doi: 10.1111/pbi.2016.14.issue-8
[35] 唐仲 . 水稻高亲和硝酸盐转运蛋白基因OsNRT2.3a/b生物学功能分析. 南京:南京农业大学, 2012.
doi: 10.7666/d.Y2360186
[36] Mae T, Makino A, Ohira K . Changes in the amount of ribulose bisphosphate carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.). Plant and Cell Physiology, 1983,24(6):1079-1086.
[37] Mae T, Ohira K . The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.). Plant and Cell Physiology, 1981,22(6):1067-1074.
[38] Peng S, Khush G S, Virk P , et al. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008,108:32-38.
doi: 10.1016/j.fcr.2008.04.001
[39] Moreau D, Allard V, Gaju O , et al. Acclimation of leaf nitrogen to vertical light gradient at anthesis in wheat is a whole-plant process that scales with the size of the canopy. Plant Physiology, 2012,160:1479-1490.
doi: 10.1104/pp.112.199935
[40] Pons T L, Schieving F, Hirose T , et al. Optimization of leaf nitrogen allocation for canopy photosynthesis in Lysimachia vulgaris. // Lambers H, Cambridge M L, Konings H , et al.Causes and consequences of variation in growth rate and productivity of higher plants.SPB Academic Publishing,The Hague,The Netherlands, 1989: 175-186.
[41] Anten N, Schieving F, Werger M . Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species. Oecologia, 1995,101:504-513.
doi: 10.1007/BF00329431
[42] Yin X, Lantinga E A, Schapendonk A H C M , et al.Some quantitative relationships between leaf area index and canopy nitrogen content and distribution. Annals of Botany, 2003,91:893-903.
doi: 10.1093/aob/mcg096
[43] Hikosaka K . Optimal nitrogen distribution within a leaf canopy under direct and diffuse light.Plant, Cell & Environment, 2014,37:2077-2085.
doi: 10.1111/pce.12291 pmid: 24506525
[44] Dingkuhn M, Penning de Vries F W T, De Datta S K , et al.Concepts for a new plant type for direct seeded flooded tropical rice.In:Direct seeded flooded rice in the tropics,International Rice Research Institute,Los Baños, Philippines, 1991: 17-38.
[45] Ort D R, Merchant S S, Alric J , et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(28):8529-8536.
doi: 10.1073/pnas.1424031112 pmid: 26124102
[46] Ort D R, Zhu X, Melis A . Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiology, 2011,155(1):79-85.
doi: 10.1104/pp.110.165886 pmid: 21078863
[47] Melis A, Neidhardt J, Benemann J R . Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. Journal of Applied Phycology, 1998,10(6):515-525.
doi: 10.1023/A:1008076231267
[48] Melis A . Solar energy conversion efficiencies in photosynthesis:minimizing the chlorophyll antennae to maximize efficiency. Plant Science, 2009,177(4):272-280.
doi: 10.1016/j.plantsci.2009.06.005
[49] Polle J E, Kanakagiri S D, Melis A .tla1,a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta, 2003,217(1):49-59.
[50] 顾骏飞, 周振翔, 李志康 , 等. 水稻低叶绿素含量突变对光合作用及产量的影响. 作物学报, 2016,42(4):551-560.
doi: 10.3724/SP.J.1006.2016.00551
[51] 周振翔, 李志康, 陈颖 , 等. 叶绿素含量降低对水稻叶片光抑制与光合电子传递的影响. 中国农业科学, 2016,49(19):3709-3720.
[52] Zhu X G, Long S P, Ort D R . Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 2010,61:235-261.
doi: 10.1146/annurev-arplant-042809-112206 pmid: 20192734
[53] 王忠 . 植物生理学. 北京: 中国农业出版社, 2009.
[54] Smith A M, Couplant G, Dolam L , et al. Plant biology.Garland Science,Taylor & Francis Group, LLC, 2012.
[55] 阮新民, 施伏芝, 从夕汉 , 等. 氮高效利用水稻碳氮代谢物含量的变化特征.作物杂志, 2015(6):76-83.
doi: 10.16035/j.issn.1001-7283.2015.06.014
[56] 宁书菊, 陈晓飞, 张国英 , 等. 水稻生育后期剑叶氮代谢相关酶活性及动力学变化. 中国生态农业学报, 2012,20(12):1606-1613.
doi: 10.3724/SP.J.1011.2012.01606
[57] Maria V C, Carla C, Irma N R , et al. Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). Journal of Plant Physiology, 2009,166(16):1775-1785.
doi: 10.1016/j.jplph.2009.05.007
[58] 杨安中, 牟筱玲, 李孟良 , 等. 喷施细胞分裂素类物质对地膜旱作水稻防衰及增产效应. 水土保持学报, 2005,19(2):199-200.
[59] 陈新红, 刘凯, 奚岭林 , 等. 土壤水分与氮素对水稻地上器官脱落酸和细胞分裂素含量的影响. 作物学报, 2005,31(11):22-30.
[60] Ju C, Buresh R J, Wang Z , et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research, 2015,175:47-55.
doi: 10.1016/j.fcr.2015.02.007
[61] Sui B, Feng X M, Tian G L , et al. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Research, 2013,150:99-107.
doi: 10.1016/j.fcr.2013.06.012
[62] 李勇 . 氮素营养对水稻光合作用与光合氮素利用率的影响机制研究. 南京:南京农业大学, 2011.
doi: 10.7666/d.Y2038625
[63] 章起明, 曾勇军, 吕伟生 , 等. 每穴苗数和施氮量对双季机插稻产量及氮肥利用效率的影响.作物杂志, 2016(3):144-150.
doi: 10.16035/j.issn.1001-7283.2016.03.027
[64] 刘立军, 杨立年, 孙小淋 , 等. 水稻实地氮肥管理的氮肥利用效率及其生理原因. 作物学报, 2009,35(9):1672-1680.
doi: 10.3724/SP.J.1006.2009.01672
[65] 潘剑玲, 代万安, 尚占环 , 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展. 中国生态农业学报, 2013,21(5):526-535.
doi: 10.3724/SP.J.1011.2013.00526
[66] 韩新忠, 朱利群, 杨敏芳 , 等. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响. 农业环境科学学报, 2012,31(11):2192-2199.
[67] 刘立军, 王康君, 卞金龙 , 等. 结实期干湿交替灌溉对籽粒蛋白质含量不同的转基因水稻的生理特性及产量的影响. 中国水稻科学, 2014,28(4):384-390.
doi: 10.3969/j.issn.10017216.2014.04.007
[68] 张自常, 李鸿伟, 陈婷婷 , 等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 中国农业科学, 2011,44(24):4988-4998.
doi: 10.3864/j.issn.0578-1752.2011.24.003
[1] 姬生栋 栗 鹏 李江伟 宋刘敏 刘苗苗 高狂龙 尹海庆. 水稻株系与亲本间灌浆期POD 酶谱及遗传效应分析[J]. 作物杂志, 2018, (5): 17–20
[2] 马孟莉 郑 云 周晓梅 张婷婷 张晓倩 卢丙越. 云南哈尼梯田红米地方品种遗传多样性分析[J]. 作物杂志, 2018, (5): 21–26
[3] 陈瑛瑛 王徐艺凌 朱宇涵 武 威 刘 涛 孙成明. 水稻穗部氮素含量高光谱估测研究[J]. 作物杂志, 2018, (5): 116–120
[4] 隋阳辉, 高继平 刘彩虹, 徐正进 王延波 赵海岩. 东北冷凉地区秸秆还田方式对水稻#br# 光合、干物质积累及氮素吸收的影响[J]. 作物杂志, 2018, (5): 137–143
[5] 王袁,郭泽,李晓辉,徐世晓,邢学霞,张思琦,何佳,刘超,陈芳,杨铁钊. 不同温度条件下根结线虫侵染对烟草根系的影响[J]. 作物杂志, 2018, (4): 161–166
[6] 柏文恋,郑毅,肖靖秀. 豆科禾本科间作促进磷高效吸收利用的地下部生物学机制研究进展[J]. 作物杂志, 2018, (4): 20–27
[7] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48–52
[8] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 69–78
[9] 曾波. 近30年来我国水稻主要品种更新换代历程浅析[J]. 作物杂志, 2018, (3): 1–7
[10] 张莉,李赞堂,王士银,麻艳超,东方阳,李学勇,徐江. 水稻氮素吸收低效型突变体osnad1的生理和遗传分析[J]. 作物杂志, 2018, (3): 68–76
[11] 赫臣,郑桂萍,赵海成,陈立强,李红宇,吕艳东,宋江. 增施腐殖酸及减量施肥对盐碱地水稻穗部性状与产量的影响[J]. 作物杂志, 2018, (3): 129–134
[12] 崔勇. 稻田水旱轮作的研究进展[J]. 作物杂志, 2018, (3): 8–14
[13] 唐志强,董立强,李睿,张丽颖,何娜,李跃东. 氮素与土壤类型对水稻秧苗素质及养分吸收的影响[J]. 作物杂志, 2018, (3): 141–147
[14] 曾波,孙世贤,王洁. 我国水稻主要品种近30年来审定及推广应用概况[J]. 作物杂志, 2018, (2): 1–5
[15] 曲歌,陈争光,王雪. 基于近红外光谱与SIMCA和PLS-DA的水稻品种鉴别[J]. 作物杂志, 2018, (2): 166–170
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .