作物杂志,2023, 第1期: 52–57 doi: 10.16035/j.issn.1001-7283.2023.01.008

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

脱支和反复湿热处理对苦荞抗性淀粉含量和理化特性的影响

付梓平1,2(), 范昱1, 赖弟利2,3, 张凯旋2, 朱剑锋4, 李基光5, 周美亮2(), 王俊珍4()   

  1. 1成都大学食品与生物工程学院,610000,四川成都
    2中国农业科学院作物科学研究所,100081,北京
    3贵州大学农学院,550000,贵州贵阳
    4凉山彝族自治州农业科学研究院,615000,四川凉山
    5湖南省农业科学院作物研究所,410000,湖南长沙
  • 收稿日期:2022-06-21 修回日期:2022-09-16 出版日期:2023-02-15 发布日期:2023-02-22
  • 通讯作者: 周美亮,主要从事荞麦种质资源与产量、品质育种研究,E-mail:zhoumeiliang@caas.cn;王俊珍,主要从事荞麦种质资源与产量、品质育种研究,E-mail:wangjunzhen108@163.com
  • 作者简介:付梓平,从事苦荞淀粉研究,E-mail:1271068611@qq.com
  • 基金资助:
    国家重点研发计划(2020YFD1000800);国家重点研发计划(2020YFD1000802-01);河北省教育厅青年拔尖人才项目(BJ2019022)

Effects of Debranched and Repeated Wet Heat Treatment on Content and Physicochemical Properties of Resistant Starch of Tartary Buckwheat

Fu Ziping1,2(), Fan Yu1, Lai Dili2,3, Zhang Kaixuan2, Zhu Jianfeng4, Li Jiguang5, Zhou Meiliang2(), Wang Junzhen4()   

  1. 1College of Food and Bioengineering, Chengdu University, Chengdu 610000, Sichuan, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Agriculture, Guizhou University, Guiyang 550000, Guizhou, China
    4Agricultural Science Research Institute of Liangshan Yi Autonomous Prefecture, Liangshan 615000, Sichuan, China
    5Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410000, Hunan, China
  • Received:2022-06-21 Revised:2022-09-16 Online:2023-02-15 Published:2023-02-22

摘要:

采用普鲁兰酶(PUL)去除苦荞淀粉支链,进行多次湿热处理(HMT),探究PUL用量和HMT次数对苦荞全粉中抗性淀粉含量以及理化特性的影响。结果表明,PUL、HMT和PUL-HMT均能增加苦荞抗性淀粉含量,其中PUL用量10U/g、HMT 2次效果最佳,抗性淀粉含量从4.74%增加到13.38%。经过PUL-HMT,苦荞粉表面由光滑变凹凸状,晶型结构发生变化,从A型变为A+V型,相对结晶度和热焓值下降,红外光谱表明,淀粉内部短程有序结构轻微改变。去支化和HMT能有效改变苦荞粉理化性质,增加抗性淀粉含量,其中PUL10-HMT2的处理方法能得到更加理想的高抗性淀粉苦荞材料。

关键词: 苦荞, 普鲁兰酶, 湿热处理, 抗性淀粉, 理化性质

Abstract:

Starch branch chains of Fagopyrum tataricum were removed by pullulanase (PUL), and the effects of PUL dosage and times of wet and heat treatment (HMT) on resistant starch content and physicochemical properties of F.tataricum whole powder were investigated. The results showed that the content of resistant starch of F.tataricum could be increased by PUL, HMT and PUL-HMT, in which the dosage of PUL was 10U/g (PUL10), and the two times treatment (HMT2) had the best effects, the resistant starch content increased from 4.74% to 13.38%. After PUL-HMT, the surface of F.tataricum powder changed from smooth to concave and convex, the crystal structure changed from A type to A+V type, and the relative crystallinity and enthalpy value decreased. Infrared spectroscopy showed that the short-range ordered structure in starch changed slightly. The chemical properties and resistant starch content of F.tataricum powder could be effectively changed by debranching and HMT, and PUL10-HMT2 treatment could get more ideal F.tataricum material with high resistant starch.

Key words: Fagopyrum tataricum, Pullulanase, Wet heat treatment, Resistant starch, Physicochemical properties

表1

不同条件处理后抗性淀粉含量

样品
Sample
普鲁兰酶用量
Pullulanase
dosage (U/g)
湿热处理次数
Times of wet
heat treatment
抗性淀粉含量
Resistant starch
content (%)
PUL0-HMT0 0 0 4.74±0.12f
PUL10-HMT0 10 0 11.58±0.27b
PUL20-HMT0 20 0 10.96±0.08c
PUL0-HMT1 0 1 6.48±0.06e
PUL10-HMT1 10 1 12.82±0.12a
PUL20-HMT1 20 1 12.70±0.27a
PUL0-HMT2 0 2 9.34±0.02d
PUL10-HMT2 10 2 13.38±0.35a
PUL20-HMT2 20 2 13.20±0.26a

图1

天然样品电镜扫描图

图2

PUL10-HMT2样品扫描电镜图

图3

不同条件处理样品的X-射线衍射图

图4

不同条件处理的红外光谱图

表2

不同条件处理后峰强度比值

样品Sample 1047/1022cm-1 1022/995cm-1
天然样品Natural sample (CK) 1.04±0.26a 0.97±0.26a
PUL10-HMT2 1.01±0.08a 0.99±0.16a

表3

不同条件处理后热力学参数

参数Parameter 天然样品Natural sample PUL10-HMT2
T0 (℃) 75.73±0.08b 80.43±0.54a
Tp (℃) 79.83±0.34b 83.76±0.28a
Tc (℃) 83.50±0.32b 85.67±0.07a
?H (J/g) 5.09±0.14a 1.58±0.21a
?T (℃) 7.77±0.38a 5.24±0.59a
[1] 王强, 向达兵, 魏威, 等. 赤霉素对苦荞生长、结实和产量的影响. 南方农业学报, 2022, 53(2):441-450.
[2] 张恩华, 王亚, 聂子涵, 等. 苦荞芽苗菜黄酮超声提取工艺. 北京农学院学报, 2022, 37(2):104-108.
[3] Zhong L Y, Lin Y J, Wang C, et al. Chemical profile, antimicrobial and antioxidant activity assessment of the crude extract and its main flavonoids from tartary buckwheat sprouts. Molecules, 2022, 27(2):374.
doi: 10.3390/molecules27020374
[4] 白浩. 强化抗性淀粉低蛋白主食对早期2型糖尿病肾病防治效果的研究. 泰安:山东大学, 2018.
[5] Adrianna B, Sylwia S, Amin M K, et al. Health benefits of resistant starch:A review of the literature. Journal of Functional Foods, 2022, 93:105094.
doi: 10.1016/j.jff.2022.105094
[6] 费洪立, 李志江, 阮长青, 等. 抗性淀粉的生理功能及其在食品中的应用. 食品工业科技, 2022, 43(18):425-432.
[7] 张雅琦, 阮长青, 张东杰, 等. 抗性淀粉的分析方法研究进展. 中国粮油学报, 2022, 11(2):1-13
[8] Leeman A M, Karlsson M E, Eliasson A C, et al. Resistant starch formation in temperature treated potato starches varying in amylose/amylopectin ratio. Carbohydrate Polymers, 2006, 65(3):306-313.
doi: 10.1016/j.carbpol.2006.01.019
[9] Wang R, Li M, Padraig S, et al. Preparation, structural characteristics and physiological property of resistant starch. Advances in Food and Nutrition Research, 2021, 95(9):40-41.
[10] 张婧婷. 抗性淀粉的类型及其制备技术研究进展. 现代面粉工业, 2021, 35(6):26-33.
[11] Li M N, Zhang B, Xie Y, et al. Effects of debranching and repeated heat-moisture treatments on structure, physicochemical properties and in vitro digestibility of wheat starch. Food Chemistry, 2019, 294(5):440-447.
doi: 10.1016/j.foodchem.2019.05.040
[12] Trinh T M D, Nguyen T M H, Nguyen T L P, et al. Physicochemical properties and in vitro digestibility of mung-bean starches varying amylose contents under citric acid and hydrothermal treatments. International Journal of Biological Macromolecules, 2020, 164(7):651-658.
doi: 10.1016/j.ijbiomac.2020.07.187
[13] 亢灵涛, 宋莹, 刘思含, 等. 压热法制备甘薯抗性淀粉的工艺优化. 食品工业科技, 2019, 40(1):162-167,180.
[14] Goni I, García-Dizl L. Analysis of resistant starch: a method for foods and food products. Food Chemistry, 1996, 56(4):445-449.
doi: 10.1016/0308-8146(95)00222-7
[15] Sun H R, Fan J Y, Tian Z G, et al. Effects of treatment methods on the formation of resistant starch in purple sweet potato. Food Chemistry, 2021, 367:130580.
doi: 10.1016/j.foodchem.2021.130580
[16] 赵凯, 陈威, 宫玉晶, 等. 酶脱支处理对颗粒态缓慢消化淀粉形成的影响. 食品科学技术学报, 2019, 37(2):42-47.
[17] 甘增鹏, 谭金萍, 任剑豪, 等. 含水量对湿热处理荸荠淀粉性质的影响. 中国粮油学报, 2019, 34(12):13-18,26.
[18] Gong B, Xu M J, Li B, et al. Repeated heat-moisture treatment exhibits superiorities in modification of structural, physicochemical and digestibility properties of red adzuki bean starch compared to continuous heat-moisture way. Food Research International, 2017, 102(9):776-784.
doi: 10.1016/j.foodres.2017.09.078
[19] Martins F L, Halal S L M E, Dias A R G, et al. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydrate Polymers, 2021, 274:118665.
doi: 10.1016/j.carbpol.2021.118665
[20] 王东旭, 郭美玲, 李占明, 等. 湿热及酶解处理对糯米粉体外消化特性和血糖生成指数的影响. 食品安全质量检测学报, 2022, 13(7):2252-2257.
[21] 李蒙娜. 小麦抗性淀粉的制备及结构性质研究. 合肥:合肥工业大学, 2019.
[22] 李红梅, 陈文文, 黄璐, 等. 复合湿热处理对苦荞全粉理化特性及体外消化性的影响. 食品科学技术学报, 2021, 39(5):39-48.
[23] Huang T T, Zhou D N, Jin Z Y, et al. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocolloids, 2016, 54(10):202-210.
doi: 10.1016/j.foodhyd.2015.10.002
[24] Jacinto A R L, Carlos S N, João V F F, et al. Effect of heat- moisture treatment on the thermal,structural and morphological properties of quinoa starch. Carbohydrate Polymer Technologies and Applications, 2022, 3:100192.
doi: 10.1016/j.carpta.2022.100192
[25] 杨景峰, 罗志刚, 罗发兴. 淀粉晶体结构研究进展. 食品工业科技, 2007(7):240-243.
[26] 唐玮泽, 肖华西, 唐倩, 等. 多次湿热处理对大米淀粉结构和性质的影响. 中国粮油学报, 2020, 35(10):77-83.
[27] 张明. 湿热协同微波处理对淀粉理化性质及消化性的影响. 广州:华南理工大学, 2014.
[28] 贾淑玉, 张百汝, 李杰, 等. 湿热处理对山药粉理化及结构性质的影响. 食品工业科技, 2021, 42(7):22-26.
[29] Yang C Y, Zhong F, Goff H D, et al. Study on starch-protein interactions and their effects on physicochemical and digestible properties of the blends. Food Chemistry, 2018, 280(12):51-58.
doi: 10.1016/j.foodchem.2018.12.028
[30] Zhang K Y, Zhao D, Guo D, et al. Physicochemical and digestive properties of A- and B-type granules isolated from wheat starch as affected by microwave-ultrasound and toughening treatment. International Journal of Biological Macromolecules, 2021, 183(4):481-489.
doi: 10.1016/j.ijbiomac.2021.04.180
[31] 张秀. 淀粉DSC热转变过程中分子变化机理. 天津:天津科技大学, 2017.
[32] 莫琰, 杨尚威, 赵灿, 等. 普鲁兰酶酶解对葛根淀粉理化特性的影响. 食品工业科技, 2022, 43(13):79-85.
[33] 王宁, 阮长青, 张东杰, 等. RS3型抗性淀粉制备方法研究进展. 中国粮油学报, 2021, 36(12):185-193.
[34] Olga A, Catarina G, Ana A, et al. Bread with a high level of resistant starch influenced the digestibility of the available starch fraction. Bioactive Carbohydrates and Dietary Fibre, 2022, 28:100318.
doi: 10.1016/j.bcdf.2022.100318
[35] Lei S Z, Liu L, Yue P Y, et al. Lotus seed resistant starch decreases the blood lipid and regulates the serum bile acids profiles in hyperlipidemic rats. Journal of Functional Foods, 2022, 92:105040.
doi: 10.1016/j.jff.2022.105040
[36] Shen L S, Li J Y, Li Y H. Resistant starch formation in rice: Genetic regulation and beyond. Plant Communications, 2022, 3(3):100329.
doi: 10.1016/j.xplc.2022.100329
[37] 周小理, 陈杰圣, 王士愁, 等. 不同处理方式对苦荞直链淀粉-黄酮复合物结构及消化性的影响. 粮食与油脂, 2022, 35(3):1-7,21.
[38] 王灼琛, 程江华. 苦荞抗性淀粉制备工艺的优化研究. 安徽农业科学, 2017, 45(36):72-74,179.
[39] 谢三都, 陈惠卿, 谢小伟, 等. 淮山药RS3抗性淀粉制备及其消化特性. 农产品加工, 2020(13):17-22.
[40] 徐忠, 岳进, 闫宇航, 等. 稻米粉和淀粉改性研究进展. 中国食品添加剂, 2021, 32(7):144-149.
[41] Xu P, Zhang S Y, Luo Z G, et al. Biotechnology and bioengineering of pullulanase:state of the art and perspectives. World Journal of Microbiology and Biotechnology, 2021, 37(3):7115-7123.
[42] Li S L, Deng X C, Gao Q Y. Production and characterization of resistant starch from hylon VII with pullulanase and heat- moisture treatment. 241st National Meeting and Exposition of the American-Chemical-Society, 2011.
[1] 王俊珍, 周美亮, 李发良, 张凯旋, 朱剑锋, 沈阿衣, 洛古有夫, 姚聚红, 殷远杰, 伍东明, 张杰. 苦荞新品种“川荞6号”的选育及栽培技术[J]. 作物杂志, 2022, (6): 241–244
[2] 施娴, 李洪有, 卢丙越, 周云, 赵继菊, 赵孟丽, 梁京, 孟衡玲. 3个苦荞品种对盐胁迫的生理响应及耐受性评价[J]. 作物杂志, 2022, (3): 149–154
[3] 杨晓琳, 段迎, 蔡苏云, 贺润丽, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王莉花. 苦荞漆酶基因的克隆与生物信息学分析[J]. 作物杂志, 2022, (3): 73–79
[4] 尹桂芳, 段迎, 杨晓琳, 蔡苏云, 王艳青, 卢文洁, 孙道旺, 贺润丽, 王莉花. 苦荞FtC4H基因克隆与生物信息学分析[J]. 作物杂志, 2022, (1): 77–83
[5] 翁文凤, 伍小方, 张凯旋, 唐宇, 江燕, 阮景军, 周美亮. 过表达FtbZIP5提高苦荞毛状根黄酮积累及其耐盐性[J]. 作物杂志, 2021, (4): 1–9
[6] 贾瑞玲, 赵小琴, 南铭, 陈富, 刘彦明, 魏立平, 刘军秀, 马宁. 64份苦荞种质资源农艺性状遗传多样性分析与综合评价[J]. 作物杂志, 2021, (3): 19–27
[7] 靳建刚, 田再芳. 山西北部地区引种苦荞品种的灰色关联度分析[J]. 作物杂志, 2021, (2): 52–56
[8] 马名川, 刘龙龙, 刘璋, 周建萍, 南成虎, 张丽君. 苦荞全基因组SSR位点特征分析与分子标记开发[J]. 作物杂志, 2021, (1): 38–46
[9] 卢晓玲, 何铭, 张凯旋, 廖志勇, 周美亮. 苦荞鼠李糖基转移酶FtF3GT1基因的克隆与转化毛状根研究[J]. 作物杂志, 2020, (5): 33–40
[10] 杨学乐, 张璐, 李志清, 何录秋. 苦荞种质资源表型性状的遗传多样性分析[J]. 作物杂志, 2020, (5): 53–58
[11] 李春花, 黄金亮, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王春龙, 郭来春, 洪波, 任长忠, 王莉花. 苦荞粒形相关性状的遗传分析[J]. 作物杂志, 2020, (3): 42–46
[12] 马成瑞,向达兵,万燕,欧阳建勇,宋月,唐正松,刘建英,赵钢. 不同苦荞品种花和籽粒空间分布特征及差异分析[J]. 作物杂志, 2020, (1): 35–40
[13] 侯乾,王万兴,李广存,熊兴耀. 马铃薯连作障碍研究进展[J]. 作物杂志, 2019, (6): 1–7
[14] 杨甜,张永清,董馥慧,马星星,薛小娇. 不同水分条件下不同抗旱性苦荞根系生长规律研究[J]. 作物杂志, 2019, (6): 76–82
[15] 宋丽芳,冯美臣,张美俊,肖璐洁,王超,杨武德,宋晓彦. 外源硒对苦荞生长发育及子粒硒含量的影响[J]. 作物杂志, 2019, (3): 150–154
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!