作物杂志,2023, 第5期: 131–137 doi: 10.16035/j.issn.1001-7283.2023.05.019

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

减氮并调整氮肥运筹模式对常规粳稻产量及稻米品质的影响

刘秋员1(), 李猛1, 高阳光1, 史孟豫1, 卫云飞1, 季新1, 厉励1, 刘亚丽2, 王付娟1()   

  1. 1信阳市优质稻米工程技术研究中心/信阳农林学院农学院,464000,河南信阳
    2信阳市浉河区农业农村局,464000,河南信阳
  • 收稿日期:2022-05-08 修回日期:2022-05-23 出版日期:2023-10-15 发布日期:2023-10-16
  • 通讯作者: 王付娟,主要从事作物栽培生理研究,E-mail:wfj703@126.com
  • 作者简介:刘秋员,主要从事水稻优质高产高效栽培技术研究与应用,E-mail:liuqy@xyafu.edu.cn
  • 基金资助:
    河南省科技攻关计划(222102110129);信阳市创新应用专项(20210006);信阳农林学院科技创新团队(KJCXTD-202006)

Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen

Liu Qiuyuan1(), Li Meng1, Gao Yangguang1, Shi Mengyu1, Wei Yunfei1, Ji Xin1, Li Li1, Liu Yali2, Wang Fujuan1()   

  1. 1Xinyang High Quality Rice Engineering Technology Research Center/Agriculture College, Agriculture and Forestry University, Xinyang 464000, Henan, China
    2Agricultural and Rural Bureau of Shihe District of Xinyang, Xinyang 464000, Henan, China
  • Received:2022-05-08 Revised:2022-05-23 Online:2023-10-15 Published:2023-10-16

摘要:

以常规粳稻品种南粳9108和南粳5718为材料,以常规施氮模式(施氮量270kg/hm2,基蘖肥与穗肥比例为7:3)为对照(CK),在减氮条件(施氮量为225kg/hm2)下,设置了6种不同的氮肥运筹模式,分别为基蘖肥与穗肥比例为7:3(T1)、6:4(T2)、5:5(T3)、4:6(T4)、3:7(T5)、2:8(T6),研究了减氮条件下调整氮肥运筹模式对常规粳稻产量及稻米品质的影响。结果表明,氮肥减施及在减氮条件下降低基蘖肥用量,有效穗数和穗粒数呈显著降低趋势,而在减氮条件下通过增加穗肥用量能够显著提高结实率和千粒重,其中减氮处理(T2和T3)的产量与CK处理差异不显著。稻米品质方面,与CK处理相比,减氮条件下增施穗肥,整精米率、粒长、粒宽、垩白粒率、垩白大小、垩白度、蛋白质含量、消减值、回复值以及糊化温度均表现出不同程度的升高趋势,而直链淀粉含量、稻米食味值、峰值黏度、热浆黏度、崩解值和最终黏度则表现出降低趋势,其中南粳5718的T4、T5、T6处理和南粳9108的T6处理的食味值均显著低于CK处理。综上分析,减氮并调整氮肥运筹模式对常规粳稻产量和稻米品质均存在显著影响。减氮条件下的T2和T3处理能够实现减氮不减产并兼顾稻米品质。

关键词: 减氮, 氮肥运筹, 产量, 品质, 粳稻

Abstract:

Conventional japonica varieties Nanjing 9108 and Nanjing 5718 were used as tested materials and the conventional nitrogen application mode (nitrogen application amount was 270kg/ha, the ratio of basic-tiller fertilizer to panicle fertilizer was 7:3) as the control, six different nitrogen fertilization patterns (the ratio of basic-tiller fertilizer to panicle fertilizer was 7:3 (T1), 6:4 (T2), 5:5 (T3), 4:6 (T4), 3:7 (T5), 2:8 (T6), respectively) were set under reduced nitrogen (225kg/ha) to study the effects of adjusting nitrogen fertilization patterns on grain yield and rice quality of conventional japonica rice. The results showed that the number of effective panicles and spikelets per panicle decreased significantly when nitrogen fertilizer was reduced and the amount of basic-tiller fertilizer was reduced. However, increasing the amount of panicle fertilizer could significantly increase the filled grain rate and 1000-grain weight under nitrogen reduction, and there was no significant difference between T2, T3 and CK treatments in grain yield. Compared with CK, with increasing the amount of panicle fertilizer under nitrogen reduction, head milled rice rate, grain length and width, chalky kernel rate, chalky area, chalkiness degree, protein content, setback, consistence value, and pasting temperature all showed an increasing trend, while amylose content, taste value, peak viscosity, hot paste viscosity, breakdown and final viscosity showed a decreasing trend. The taste value of T4, T5 and T6 of Nanjing 5718 and T6 of Nanjing 9108 were significantly lower than that of CK. In conclusion, nitrogen reduction and adjustment of nitrogen fertilizer patterns had significant effects on grain yield and rice quality of conventional japonica rice. T2 and T3 of nitrogen reduction treatments could achieve nitrogen reduction without yield reduction and give consideration to rice quality.

Key words: Reduction of nitrogen, Nitrogen pattern, Yield, Quality, Japonica rice

表1

不同处理的氮肥运筹模式

处理
Treatment
总施氮量
Nitrogen
application
amount (kg/hm2)
基肥比例
Basic
fertilizer
ratio (%)
分蘖肥比例
Tiller
fertilizer
ratio (%)
穗肥比例
Panicle
fertilizer
ratio (%)
CK 270 35 35 30
T1 225 35 35 30
T2 225 30 30 40
T3 225 25 25 50
T4 225 20 20 60
T5 225 15 15 70
T6 225 10 10 80

表2

不同处理的产量及其构成因素

品种
Variety
处理
Treatment
有效穗数
Effective panicles
(×104/hm2)
穗粒数
Spikelets per
panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
产量
Yield
(t/hm2)
南粳5718
Nanjing 5718
T1 257.33b 144.38a 89.66b 30.77c 9.63b
T2 254.67b 141.00a 90.76b 31.60b 9.85ab
T3 250.67b 140.08a 92.46a 32.41a 10.08a
T4 240.78c 133.59b 92.80a 32.28a 9.35c
T5 239.11c 127.03c 91.80ab 32.60a 8.99d
T6 232.89c 126.79c 91.90ab 32.46a 8.68e
CK 270.78a 143.93a 90.30b 30.21d 10.14a
南粳9108
Nanjing 9108
T1 334.80b 122.74ab 90.81b 25.63b 9.32b
T2 326.90c 122.13ab 91.41b 26.28a 9.47b
T3 322.30cd 121.78ab 93.52a 26.72a 9.74a
T4 316.67d 115.21bc 93.84a 26.44a 8.62c
T5 315.00d 112.09c 92.90a 26.56a 8.43cd
T6 305.83e 109.27c 93.76a 26.82a 8.17d
CK 351.60a 125.67a 91.14b 25.28b 9.82a
方差分析Analysis of variance
品种Variety (V) 3169.58** 128.57** 9.76** 5619.43** 88.91**
氮肥处理Nitrogen treatment (N) 61.83** 10.29** 6.98** 60.17** 92.30**
品种×氮肥处理V×N 0.86ns 0.2ns 0.16ns 4.21** 1.54ns

表3

不同处理的稻米加工品质

品种
Variety
处理
Treatment
糙米率
Brown
rice rate
精米率
Milled
rice rate
整精米率
Head milled
rice rate
南粳5718
Nanjing 5718
T1 84.49a 70.04a 50.00b
T2 85.25a 71.81a 50.31b
T3 84.44a 70.63a 50.75b
T4 84.65a 70.73a 52.33b
T5 84.86a 71.31a 52.53b
T6 84.58a 70.93a 54.74a
CK 84.54a 71.44a 51.03b
南粳9108
Nanjing 9108
T1 84.97a 75.20a 66.00d
T2 85.18a 75.24a 67.38cd
T3 84.73a 74.95a 69.55b
T4 85.15a 75.64a 69.63b
T5 85.01a 74.90a 69.67b
T6 85.34a 75.53a 72.73a
CK 85.04a 75.41a 68.66bc
方差分析Analysis of variance
品种Variety (V) 45.51** 925.23** 1988.19**
氮肥处理Nitrogen treatment (N) 1.75ns 1.32ns 3.77**
品种×氮肥处理V×N 3.57* 3.08* 0.71ns

表4

不同处理的外观品质

品种
Variety
处理
Treatment
粒长
Length of grain (mm)
粒宽
Width of grain (mm)
长宽比
Length/width
垩白粒率
Chalky kernel rate (%)
垩白大小
Chalky area (%)
垩白度
Chalkiness degree (%)
南粳5718
Nanjing 5718
T1 4.94b 3.02ab 1.64ab 33.64c 39.56b 13.31c
T2 4.95b 3.02ab 1.64ab 35.64c 38.28b 13.64c
T3 5.00a 3.05a 1.65ab 40.58b 37.87b 15.37bc
T4 4.97ab 3.03ab 1.65ab 41.19b 39.52b 16.28b
T5 4.98a 3.03ab 1.65ab 47.03a 41.94a 19.72a
T6 4.99a 3.01ab 1.66a 48.35a 41.76a 20.18a
CK 4.90c 3.00b 1.63b 34.85c 38.46b 13.40c
南粳9108
Nanjing 9108
T1 4.64b 2.75d 1.70a 42.25a 31.87a 13.46bc
T2 4.64b 2.80c 1.66c 42.40a 31.06a 13.17bc
T3 4.71a 2.82b 1.67cd 44.63a 33.89a 15.10abc
T4 4.70a 2.78cd 1.68b 46.14a 29.07a 13.98bc
T5 4.71a 2.79c 1.70a 47.95a 32.58a 15.59ab
T6 4.72a 2.86a 1.66c 48.78a 34.10a 16.60a
CK 4.55c 2.72d 1.69ab 42.20a 30.76a 12.98c
方差分析Analysis of variance
品种Variety (V) 9288.93** 3493.93** 240.05** 35.24** 485.42** 22.58**
氮肥处理Nitrogen treatment (N) 128.59** 23.82** 4.60** 16.79** 8.03** 23.22**
品种×氮肥处理V×N 12.25** 14.69** 10.60** 2.24ns 3.72** 3.98**

表5

不同处理的营养及蒸煮食味品质

品种
Variety
处理
Treatment
直链淀粉含量
Amylose
content (%)
蛋白质含量
Protein
content (%)
食味品质Eating quality
外观
Appearance
硬度
Hardness
黏度
Viscosity
平衡度
Balance degree
食味值
Taste value
南粳5718
Nanjing 5718
T1 8.68a 9.74c 5.11a 7.59c 6.19a 5.19a 61.47a
T2 8.05b 9.75c 4.57b 7.87b 5.62b 4.66bc 57.99bc
T3 8.00b 10.13b 4.64b 7.71bc 5.52b 4.72bc 58.30bc
T4 7.69b 10.24b 4.46b 7.82bc 5.37b 4.50c 57.06c
T5 7.89b 10.47a 3.83c 8.09a 4.53c 3.80d 52.63d
T6 7.78b 10.49a 4.09c 7.94ab 4.83c 4.09d 54.28d
CK 8.81a 9.80c 4.88ab 7.81bc 6.10a 4.97ab 60.04ab
南粳9108
Nanjing 9108
T1 9.66a 9.35d 5.81a 7.24b 6.64a 5.83a 65.38a
T2 7.74b 9.65c 5.64ab 7.24b 6.41ab 5.69ab 64.52ab
T3 6.76c 9.77b 5.51ab 7.38ab 6.30ab 5.51ab 63.34ab
T4 6.88c 9.81b 5.38b 7.37ab 6.03bc 5.37bc 62.42bc
T5 6.91c 9.89b 5.33b 7.37ab 6.01bc 5.33bc 62.21bc
T6 7.13c 10.10a 5.03c 7.47a 5.70c 5.07c 60.40c
CK 9.91a 9.55c 5.52ab 7.34ab 6.28ab 5.56ab 63.42ab
方差分析Analysis of variance
品种Variety (V) 10.50** 149.61** 343.67** 352.66** 120.74** 286.90** 271.44**
氮肥处理Nitrogen treatment (N) 64.04** 52.13** 23.22** 9.27** 24.17** 23.87** 24.10**
品种×氮肥处理V×N 17.76** 3.70** 4.37** 4.17** 5.04** 4.83** 4.97**

表6

不同处理的RVA谱特征值

品种
Variety
处理
Treatment
峰值黏度
Peak
viscosity (cP)
热浆黏度
Hot paste
viscosity (cP)
崩解值
Breakdown
(cP)
最终黏度
Final
viscosity (cP)
消减值
Setback
(cP)
回复值
Consistence
value (cP)
糊化温度
Pasting
temperature (℃)
南粳5718
Nanjing 5718
T1 2962.00a 1756.67a 1205.33a 2215.33ab -746.67b 458.67a 75.73a
T2 2862.33b 1654.67b 1207.67a 2113.00cd -749.33b 458.33a 75.73a
T3 2858.67b 1676.33b 1182.33a 2156.67bc -702.00ab 480.33a 75.43a
T4 2825.00b 1675.00b 1150.00ab 2134.33cd -690.67ab 459.33a 76.25a
T5 2694.00c 1577.33c 1116.67b 2069.00de -625.00ab 491.67a 76.10a
T6 2642.33c 1570.33c 1072.00b 2040.00e -602.33a 469.67a 76.27a
CK 2956.33a 1758.33a 1198.00a 2235.67a -720.67ab 477.33a 74.92a
南粳9108
Nanjing 9108
T1 2177.00b 1441.33a 735.67ab 2020.33a -156.67ab 579.00a 75.00a
T2 2160.00bc 1433.00ab 727.00ab 2029.00a -131.00ab 596.00a 74.88a
T3 2128.67bc 1407.00ab 721.67ab 2041.00a -87.67a 634.00a 75.18a
T4 2079.00c 1409.33ab 669.67b 1969.00a -110.00ab 559.67a 75.38a
T5 2073.00c 1366.00b 707.00b 2010.33a -62.67a 644.33a 75.20a
T6 1982.33d 1304.00c 678.33b 1942.00a -40.33a 638.00a 75.27a
CK 2247.67a 1452.67a 795.00a 2022.67a -225.00b 570.00a 74.92a
方差分析Analysis of variance
品种Variety (V) 4353.97** 1005.53** 1689.98** 139.35** 1428.10** 126.69** 13.84**
氮肥处理Nitrogen treatment (N) 51.42** 31.11** 8.97** 10.61** 7.77** 2.08ns 1.85ns
品种×氮肥处理V×N 3.68** 3.06* 1.85ns 3.90** 1.06ns 0.85ns 0.66ns
[1] Godfray H, Beddington J R, Crute I R, et al. Food security:The challenge of feeding 9 billion people. Science, 2010, 327:812-818.
doi: 10.1126/science.1185383
[2] Zhang H, Hou D P, Peng X L, et al. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice. Journal of Integrative Agriculture, 2019, 18(12):2716-2731.
doi: 10.1016/S2095-3119(19)62836-4
[3] Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438):459-462.
doi: 10.1038/nature11917
[4] 张卫峰, 马林, 黄高强, 等. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46(15):3161-3171.
doi: 10.3864/j.issn.0578-1752.2013.15.010
[5] 夕汉, 施伏芝, 阮新民, 等. 氮肥水平对不同基因型水稻氮素利用率、产量和品质的影响. 应用生态学报, 2017, 28(4):1219-1226.
[6] 刘科, 陆建, 高梦涛, 等. 施氮量对杂交水稻叶片光谱特征、SPAD值和光能拦截率的影响. 核农学报, 2018, 32(2):362-369.
doi: 10.11869/j.issn.100-8551.2018.02.0362
[7] 吴宗钊, 原保忠. 氮肥施用量对C两优华占产量及生长性状的影响. 杂交水稲, 2020, 12(22):1-5.
[8] 魏海燕, 张洪程, 戴其根, 等. 施氮量对优质粳稻南粳46产量及品质的影响. 江苏农业科学, 2012, 40(11):50-52
[9] Zhu D W, Zhang H C, Guo B W, et al. Effects of nitrogen level on yield and quality of japonica soft super rice. Journal of Integrative Agriculture, 2017, 16(5):1018-1027.
doi: 10.1016/S2095-3119(16)61577-0
[10] 习敏, 林赵淼, 赵艳岭, 等. 氮肥对粳稻籽粒腹白和心白发生及生化组成的影响. 中国水稻科学, 2016, 30(2):193-199.
doi: 10.16819/j.1001-7216.2016.5039
[11] 赵可, 许俊伟, 姜元华, 等. 施氮量和品种类型对稻米食味品质的影响. 食品科学, 2014, 35(21):63-67.
doi: 10.7506/spkx1002-6630-201421013
[12] 张翔, 施天怡, 戴其根, 等. 减氮密植模式下常规粳稻产量形成特征. 中国稻米, 2021, 27(6):53-57.
doi: 10.3969/j.issn.1006-8082.2021.06.011
[13] 李超, 肖小平, 唐海明, 等. 减氮增密对机插双季稻生物学特性及周年产量的影响. 核农学报, 2019, 33(12):2451-2459.
doi: 10.11869/j.issn.100-8551.2019.12.2451
[14] 罗亢, 曾勇军, 石庆华, 等. 基于增苗减氮技术构建晚籼稻高产氮高效群体. 江西农业大学学报, 2021, 43(5):961-970.
[15] 秦俭, 杨志远, 孙永健, 等. 氮素穗肥运筹对两个杂交中籼稻叶片形态、光合生产及产量的影响. 中国水稻科学, 2017, 31(4):391-399.
doi: 10.16819/j.1001-7216.2017.6146 391
[16] 胡群, 夏敏, 张洪程, 等. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响. 作物学报, 2017, 43(3):420-431.
[17] 刘立军, 王志琴, 桑大志, 等. 氮肥运筹对水稻产量及稻米品质的影响. 扬州大学学报(农业与生命科学版), 2002, 23(3):46-50.
[18] 江立庚, 曹卫星, 甘秀芹, 等. 不同施氮水平对南方早稻氮素利用及其产量和品质的影响. 中国农业科学, 2004, 37(4):490-496.
[19] 仇景涛, 吴壮, 蒋天昊, 等. 不同生育时期氮肥减施对水稻群体生产特征的影响及减肥策略初步分析. 扬州大学学报(农业与生命科学版), 2020, 41(3):52-65.
[20] 农业部农产品加工标准化技术委员会. 米质测定方法:NY/T 83- 2017. 北京: 中国农业出版社, 2017.
[21] 中华人民共和国农业部. 稻米整精米率、 粒型、垩白粒率、垩白度及透明度的测定图像法:NY/T 2334- 2013. 北京: 中国农业出版社, 2013.
[22] 全国粮油标准化技术委员会. 大米直链淀粉含量的测定:GB/T 15683- 2008. 北京: 中国标准出版社, 2008.
[23] 国家食品药品监督管理局.食品中蛋白质的测定: GB 5009.5- 2016. 北京: 中国标准出版社, 2016.
[24] 吴桂成, 张洪程, 钱银飞, 等. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010, 43(2):266-276.
[25] 李敏, 罗德强, 江学海, 等. 控水增密模式对杂交籼稻减氮后产量形成的调控效应. 作物学报, 2020, 46(9):1430-1447.
doi: 10.3724/SP.J.1006.2020.02017
[26] Kumar R, Sarawgi A K, Ramos C, et al. Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Research, 2006, 96(1):455-465.
doi: 10.1016/j.fcr.2005.09.001
[27] 胡香玉, 钟旭华, 彭碧琳, 等. 减氮条件下高产水稻品种的产量形成和氮素利用特征. 核农学报, 2019, 33(12):2460-2471.
[28] Liu X, Xu S S, Zhang J W, et al. Effect of continuous reduction of nitrogen application to a rice-wheat rotation system in the middle-lower Yangtze River region (2013-2015). Field Crops Research, 2016, 196(9):348-356.
doi: 10.1016/j.fcr.2016.07.003
[29] 薛利红, 李刚华, 侯朋福, 等. 太湖地区稻田持续高产的减量施氮技术体系研究. 农业环境科学学报, 2016, 35(4):729-736.
[30] 刘信, 刘春青, 王尔玺, 等. 我国优质稻品牌化发展现状及建议. 中国稻米, 2022, 28(2):12-15.
[31] 孙国才, 崔月峰, 卢铁钢, 等. 氮肥用量及前氮后移模式对水稻产量及品质的影响. 中国稻米, 2012, 18(5):49-52.
doi: 10.3969/j.issn.1006-8082.2012.05.014
[32] 罗学超, 龚金龙, 胡雅杰, 等. 不同叶龄期追施穗肥对杂交中粳产量及品质的影响. 江苏农业科学, 2012, 40(3):57-59.
[33] 胡群. 中期氮肥调控对优良食味粳稻产量和品质的效应及其机理. 扬州:扬州大学, 2020.
[34] 周立军, 江玲, 翟虎渠, 等. 水稻垩白的研究现状与改良策略. 遗传, 2009, 31(6):563-572.
[35] 金正勋, 秋太权, 孙艳丽, 等. 氮肥对稻米垩白及蒸煮食味品质特性的影响. 植物营养与肥料学报, 2001, 7(1):31-35.
[36] 殷春渊, 王书玉, 薛应征, 等. 氮肥处理对水稻穗部性状和品质的影响. 天津农业科学, 2013, 19(1):15-19.
[37] Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39:623-630.
doi: 10.1038/ng2014
[38] 曲红岩, 张欣, 施利利, 等. 水稻食味品质主要影响因子分析. 江苏农业科学, 2017, 45(6):172-175.
[39] Pang Y, Ali J, Wang X, et al. Relationship of rice grain amylose, gelatinization temperature and pasting properties for breeding better eating and cooking quality of rice varieties. PLoS ONE, 2016, 11(12):e0168483.
doi: 10.1371/journal.pone.0168483
[40] 谢黎虹, 罗炬, 唐绍清, 等. 蛋白质影响水稻米饭食味品质的机理研究. 中国水稻科学, 2013, 27(1):91-96.
[41] 张忠臣, 刘海英, 高红秀, 等. 施肥量和穴内插秧密度对寒地粳稻产量和品质性状的影响. 作物杂志, 2012(3):99-104.
[42] 张艳霞, 丁艳锋, 王强盛, 等. 氮素穗肥对不同品种稻米品质性状的影响. 植物营养与肥料学报, 2007, 13(6):1080-1085.
[43] Liu Q Y, Tao Y, Zhou L, et al. Relating amylose and protein contents to eating quality in 105 varieties of japonica rice. Cereal Chemistry, 2020, 97(6):1303-1312.
doi: 10.1002/cche.v97.6
[44] Reddy K R, Subramanian R, Ali S Z, et al. Viscoelastic properties of rice flour pastes and their relationship to amylose content and rice quality. Cereal Chemistry, 1994, 71(6):548-552.
[45] 沈新平, 沈明星, 龚丽萍, 等. 太湖地区晚粳地方种稻米RVA谱特征多样性分析. 作物学报, 2006, 32(12):1902-1908.
[1] 李兴河, 王海涛, 刘存敬, 唐丽媛, 张素君, 蔡肖, 张香云, 张建宏. 利用海岛棉染色体片段导入系定位纤维品质性状QTL[J]. 作物杂志, 2023, (5): 1–9
[2] 王振龙, 宿翠翠, 周琦, 邓超超, 周彦芳. 氮肥减量配施有机肥对菊芋产量、品质及土壤质量的影响[J]. 作物杂志, 2023, (5): 104–109
[3] 刘艳, 曲航, 邢月华, 王晓辉, 宫亮. 新型氮肥对水稻生长、氮肥利用率和经济效益的影响[J]. 作物杂志, 2023, (5): 110–116
[4] 杨梅, 杨卫君, 高文翠, 贾永红, 张金汕. 生物质炭与氮肥配施对灌区冬小麦干物质转运、农艺性状及产量的影响[J]. 作物杂志, 2023, (5): 138–144
[5] 张蓉, 陈晓文, 路平, 尤艳蓉, 周德录, 李德明. 不同覆盖模式对旱地马铃薯土壤水热变化和产量的影响[J]. 作物杂志, 2023, (5): 145–150
[6] 吴雪琴, 刘开宇, 韩春华, 阿力木江·克来木, 崔延南, 李江余, 马春梅, 仲文帆, 赵强. 14%噻苯·敌草隆对棉花脱叶催熟及产量和品质的影响[J]. 作物杂志, 2023, (5): 164–169
[7] 胡锐, 胡香玉, 傅友强, 叶群欢, 潘俊峰, 梁开明, 李妹娟, 刘彦卓, 钟旭华. 氮肥运筹对水稻根系生长发育的影响及其与氮肥吸收利用的关系[J]. 作物杂志, 2023, (5): 179–186
[8] 管庆林, 朴晟源, 张思唯, 王俊, 雷云康, 钟秋, 赵铭钦. 中微量元素配施对雪茄烟叶光合特性、碳氮代谢及产量和质量的影响[J]. 作物杂志, 2023, (5): 187–196
[9] 田效琴, 王丹, 李卓, 刘永红, 李伟. 垄作与覆膜对油菜产量及水分利用效率的影响[J]. 作物杂志, 2023, (5): 204–211
[10] 依兵, 刘金刚, 宋殿秀, 王德兴, 赵明珠, 刘晓宏, 孙恩玉, 崔良基. 干旱地区向日葵与谷子间作的土地生产力及种间竞争力的研究[J]. 作物杂志, 2023, (5): 219–223
[11] 赵卫喆, 杜春芳, 孙璇, 姚琳, 咸拴狮, 张高杨. 摘薹对“油蔬两用”油菜经济性状与产量的影响[J]. 作物杂志, 2023, (5): 224–230
[12] 刘慧, 龙学毅, 焦岩, 王丽红. 生物炭与磷肥配施对水稻生长发育及产量的影响[J]. 作物杂志, 2023, (5): 238–248
[13] 曹庆军, 李刚, 杨浩, 娄玉勇, 杨粉团, 孔凡丽, 李辛琲, 赵新凯, 姜晓莉. 不同耕作方式对春玉米种床质量的影响及其与幼苗群体建成和产量的关系[J]. 作物杂志, 2023, (5): 249–254
[14] 张东旭, 胡丹珠, 闫金龙, 冯丽云, 邬志远, 张俊灵, 李岩华. 不同茬口晚播小麦喷施链霉菌剂对产量及光合特性的影响[J]. 作物杂志, 2023, (5): 255–263
[15] 葛昌斌, 秦素研, 乔冀良, 王君, 齐双丽, 卢雯瑩, 张振永. 2001-2021年豫南和江苏淮河以南审定小麦品种农艺、品质性状和病害演变对比分析[J]. 作物杂志, 2023, (5): 49–58
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!