作物杂志,2023, 第5期: 30–36 doi: 10.16035/j.issn.1001-7283.2023.05.005

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

不同小麦品种(系)拔节期耐渍性评价

宋桂成(), 余桂红, 张鹏, 马鸿翔   

  1. 江苏省农业科学院粮食作物研究所,210014,江苏南京
  • 收稿日期:2022-05-06 修回日期:2022-06-14 出版日期:2023-10-15 发布日期:2023-10-16
  • 作者简介:宋桂成,主要从事小麦育种与抗逆品质研究,E-mail:schgui@163.com
  • 基金资助:
    国家现代农业技术产业技术体系(CARS-03);江苏省农业科技自主创新资金(CX(18)1001)

Evaluation on Waterlogging Resistance of Different Wheat Varieties (Lines) at Jointing Stage

Song Guicheng(), Yu Guihong, Zhang Peng, Ma Hongxiang   

  1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2022-05-06 Revised:2022-06-14 Online:2023-10-15 Published:2023-10-16

摘要:

为评价拔节期不同小麦耐渍性,以34份品种(系)为试验材料,设置渍水和常规栽培2个处理,测量产量、千粒重和粒径等相关指标,通过相关分析、因子分析和综合得分等对耐渍性进行综合评价。结果显示,渍水14d时产量、千粒重和粒径显著下降,粒径与千粒重显著相关,千粒重和粒径的降低是产量下降的主要原因之一;耐胁迫指数(STI)、生产力几何平均值(GMP)、平均生产力(MP)、调和平均数(HM)、平均相对生产力(MRP)、相对生产力(RP)与正常条件下均产(Yp)、胁迫条件下均产(Ys)显著正相关,适于筛选渍水胁迫和正常环境下的高产潜力品种;胁迫敏感指数(SSI)、耐湿指数(WTI)、抗逆性(TOL)与Ys呈显著负相关,适于筛选渍水胁迫环境下的高产潜力品种;因子1主要解释了GMP、HM、MP、WTI和RP,反映产量特性,因子2主要解释了SSI、TOL和STI,反映耐渍特性;GMP、HM、MP、STI、WTI和RP被提取的比例均在0.85以上,被解释程度高,适于品种(系)耐渍性的初步筛选。通过因子综合得分和耐胁迫得分(STS)发现,国豪麦6号、扬15-133、扬16-157、扬麦20、华麦1064、鄂麦166、华麦1061、安农170、宁麦9号、华麦1063和皖科125的综合得分和STS值均高于耐渍对照扬麦25,可见综合得分0.30以上或STS值4.00以上的为耐渍品种(系)。因此,由GMP、HM、MP、STI、WTI和RP获得的综合得分和STS值可作为筛选耐渍种质资源的指标。

关键词: 小麦, 耐渍性, 因子分析, 指数筛选

Abstract:

In order to evaluate the tolerance to waterlogging of wheat at jointing stage, 34 varieties (lines) were used as experimental materials, two treatments of waterlogging and conventional cultivation were set, the yield, 1000-grain weight and grain diameter were measured, and the comprehensive evaluation of the materials' resistance was carried out by correlation analysis, factor analysis and comprehensive score. The results showed that waterlogging for 14 days resulted in a significant decrease in yield, 1000-grain weight and grain diameter. The grain diameter was significantly correlated with 1000-grain weight, and the decrease of 1000-grain weight and grain diameter was main factors of yield decrease. Stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), harmonic mean (HM), mean relative performance (MRP), relative productivity (RP) were significantly positive with the mean grain yield of genotype under normal condition (Yp) and mean grain yield of genotype under stress condition (Ys), which were suitable for screening potential genotypes under waterlogging stress and normal environment. The stress susceptibility index (SSI), waterlogging tolerance index (WTI), stress tolerance (TOL) were significantly negatively correlated with Ys, which were suitable for screening varieties with high yield potential under waterlogging stress. Factor 1 mainly explained GMP, HM, MP, WTI and RP, reflecting the yield characteristics, and factor 2 mainly explained SSI, Tol and STI, reflecting the waterlogging resistance characteristics. The proportion of GMP, HM, MP, STI, WTI and RP were all above 0.85, indicating a high degree of interpretation, which was suitable for primary screening of moisture resistance of varieties (lines). The results showed that the comprehensive scores and STS values of Guohaomai 6, Yang 15-133, Yang 16-157, Yang mai 20, Huamai 1064, Emai 166, Huamai 1061, Annong 170, Ningmai 9, Huamai 1063 and Wanke 125 were higher than those of waterlogging tolerant control Yangmai 25. It could be seen that the varieties with comprehensive score above 0.30 or STS value above 4.00 was waterlogging tolerance varieties. Therefore, the comprehensive scores and STS values obtained from GMP, HM, MP, STI, WTI and RP could be used as indicators for screening resistant germplasm resources.

Key words: Wheat, Waterlogging tolerance, Factor analysis, Index screening

表1

试验小麦品种(系)和来源

来源Source 品种(系)Variety (line)
四川Sichuan 川麦42,蜀麦1610,绵麦56,绵麦1419,国豪麦5号,国豪麦6号,T61749
湖北Hubei 鄂麦166,鄂麦6030,鄂麦6046,鄂麦6087
河南Henan 信麦129,信麦176,信麦181,郑麦1354
安徽Anhui 安农170,皖科125,皖麦616,皖西麦7号
江苏南京Nanjing, Jiangsu 华麦1061,华麦1062,华麦1063,华麦1064,宁麦1624,宁麦9号
江苏里下河Lixiahe, Jiangsu 扬11品19,扬15-133,扬16-157,扬16品10,扬辐麦5054,扬辐麦5059,扬辐麦6246,扬麦25,扬麦20

表2

品种(系)和渍水处理对小麦籽粒性状影响的方差分析

变异来源
Source
自由度
df
均方MS
籽粒产量
Grain
yield
千粒重
1000-grain
weight
粒径
Grain
diameter
品种(系)Variety (line) 33 0.03* 56.71* 0.07*
处理Treatment 1 1.14* 1184.91* 0.94*
区组Group 2 0.01 0.44 0.001
品种(系)×处理
Variety (line)×treatment
33 0.01* 10.71* 0.01*
区组×处理Group×treatment 2 0.02 59.01* 0.10*

图1

各处理籽粒对比及千粒重与粒径相关性分析

表3

指标间的相关性分析

指标Index Ys Yp STI SSI GMP MP WTI TOL HM MRP RP
Ys 1.00
Yp 0.37* 1.00
STI 0.91** 0.73** 1.00
SSI -0.77** 0.30 -0.44** 1.00
GMP 0.91** 0.73** 0.99** -0.44** 1.00
MP 0.88** 0.77** 0.99** -0.38** 0.99** 1.00
WTI -0.77** -0.30 0.44** -1.00** 0.44** 0.38** 1.00
TOL -0.72** 0.38* -0.36* -0.99** -0.36** -0.29 -0.99** 1.00
HM 0.93** 0.68** 0.99** -0.49** 0.99** 0.99** 0.49** -0.42** 1.00
MRP 0.90** 0.74** 0.99** -0.43** 1.00** 0.99** 0.43** -0.34** 0.99** 1.00
RP 0.88** 0.38* 0.83** -0.65** 0.83** 0.80** 0.65** -0.59** 0.85** 0.99** 1.00

表4

指数的因子载荷和因子解释的总变异

指标
Index
因子载荷Factor loading 共同度
Communality
因子1 FA1 因子2 FA2
GMP 0.95 0.32 0.97
HM 0.96 0.26 0.86
MP 0.92 0.38 0.96
MRP 0.74 0.34 0.72
SSI -0.70 0.71 0.79
WTI 0.94 0.32 0.92
TOL -0.64 0.77 0.75
RP 0.91 -0.05 0.94
STI 0.70 -0.71 0.90
变异Variance (%) 74.11 23.74
累计变异
Cumulative variance (%)
74.11 97.85

表5

基于GMP、HM、MP、STI、WTI和RP评分的前18个品种(系)及得分

序号Number GMP HM MP STI WTI RP
1 国豪麦6号(1.88) 国豪麦6号 (1.87) 国豪麦6号 (1.89) 国豪麦6号 (2.00) 扬麦20 (1.42) 国豪麦6号 (2.48)
2 华麦1064 (1.70) 扬15-133 (1.69) 华麦1064 (1.72) 华麦1064 (1.78) 华麦1061 (1.24) 扬16-157 (1.75)
3 扬15-133 (1.70) 华麦1064 (1.67) 扬15-133 (1.70) 扬15-133 (1.78) 扬11品19 (1.17) 扬15-133 (1.69)
4 扬16-157 (1.38) 扬16-157 (1.38) 鄂麦166 (1.37) 扬16-157 (1.42) 川麦42 (1.13) 华麦1064 (1.64)
5 鄂麦166 (1.37) 鄂麦166 (1.38) 扬16-157 (1.37) 鄂麦166 (1.41) 信麦129 (1.06) 信麦129 (0.94)
6 扬麦20 (1.22) 扬麦20 (1.24) 扬麦20 (1.20) 扬麦20 (1.25) 扬16-157 (0.84) 宁麦9号 (0.87)
7 宁麦9号 (1.05) 宁麦9号 (1.04) 宁麦9号 (1.06) 宁麦9号 (1.06) 国豪麦6号 (0.80) 华麦1063 (0.77)
8 华麦1061 (0.97) 华麦1061 (0.99) 华麦1061 (0.94) 华麦1061 (0.97) 扬15-133 (0.79) 皖科125 (0.77)
9 安农170 (0.91) 安农170 (0.93) 安农170 (0.89) 安农170 (0.91) 扬麦25 (0.79) 扬11品19 (0.70)
10 皖科125 (0.90) 皖科125 (0.90) 皖科125 (0.89) 皖科125 (0.89) 鄂麦166 (0.71) 川麦42 (0.65)
11 华麦1063 (0.72) 华麦1063 (0.74) 华麦1063 (0.70) 华麦1063 (0.70) 安农170 (0.68) 扬麦25 (0.61)
12 扬16品10 (0.50) 鄂麦6046 (0.44) 扬16品10 (0.63) 扬16品10 (0.47) 鄂麦6030 (0.63) 扬麦20 (0.58)
13 鄂麦6046 (0.45) 扬16品10 (0.39) 鄂麦6046 (0.46) 鄂麦6046 (0.42) 华麦1063 (0.47) 鄂麦6046 (0.43)
14 扬辐麦5054 (0.36) 扬麦25 (0.31) 扬辐麦5054 (0.44) 扬辐麦5054 (0.32) 鄂麦6087 (0.39) 鄂麦166 (0.35)
15 扬辐麦6246 (0.33) 扬辐麦5059 (0.30) 扬辐麦6246 (0.37) 扬辐麦6246 (0.29) 皖麦616 (0.27) 华麦1061 (0.32)
16 扬辐麦5059 (0.28) 扬辐麦6246 (0.29) 扬辐麦5059 (0.25) 扬辐麦5059 (0.24) 扬辐麦5059 (0.26) 鄂麦6087 (0.26)
17 扬麦25 (0.27) 扬辐麦5054 (0.29) 扬麦25 (0.23) 扬麦25 (0.23) 皖科125 (0.23) 扬16品10 (0.20)
18 鄂麦6087 (0.10) 鄂麦6087 (0.13) 鄂麦6087 (0.06) 鄂麦6087 (0.06) 宁麦1624 (0.21) 扬辐麦6246 (0.13)

表6

因子分析综合得分和STS

排序
Ranking
因子分析综合得分
Factor comprehensive score
STS
1 国豪麦6号 (1.60) 国豪麦6号 (12.48)
2 扬15-133 (1.39) 扬15-133 (10.90)
3 华麦1064 (1.35) 扬16-157 (9.80)
4 扬16-157 (1.18) 扬麦20 (9.73)
5 鄂麦166 (1.02) 华麦1064 (9.02)
6 扬麦20 (0.98) 鄂麦166 (7.99)
7 宁麦9号 (0.82) 华麦1061 (7.90)
8 华麦1061 (0.77) 安农170 (5.72)
9 皖科125 (0.70) 宁麦9号 (5.47)
10 安农170 (0.67) 华麦1063 (5.06)
11 华麦1063 (0.60) 皖科125 (5.00)
12 鄂麦6046 (0.34) 扬麦25 (4.05)
13 扬16品10 (0.29) 信麦129 (3.19)
14 扬麦25 (0.29) 扬11品19 (1.91)
15 扬辐麦6246 (0.20) 川麦42 (1.83)
16 扬辐麦5054 (0.18) 鄂麦6087 (1.82)
17 扬辐麦5059 (0.14) 鄂麦6046 (1.40)
18 鄂麦6087 (0.11) 扬辐麦5059 (1.30)
19 宁麦1624 (0.01) 宁麦1624 (0.64)
20 信麦129 (-0.01) 信麦176 (-0.55)
21 信麦176 (-0.09) 扬辐麦6246 (-0.56)
22 T61749 (-0.15) 扬辐麦5054 (-1.81)
23 川麦42 (-0.25) 扬16品10 (-1.99)
24 扬11品19 (-0.26) T61749 (-2.15)
25 郑麦1354 (-0.41) 郑麦1354 (-4.03)
26 国豪麦5号 (-0.50) 皖麦616 (-4.28)
27 绵麦56 (-0.69) 鄂麦6030 (-5.15)
28 皖科616 (-0.83) 国豪麦5号 (-5.32)
29 华麦1062 (-1.03) 信麦181 (-8.90)
30 鄂麦6030 (-1.12) 绵麦56 (-9.94)
31 蜀麦1610 (-1.30) 蜀麦1610 (-10.27)
32 皖西麦7号 (-1.35) 华麦1062 (-11.48)
33 信麦181 (-1.38) 皖西麦7号 (-13.94)
34 绵麦1419 (-1.56) 绵麦1419 (-16.22)
[1] Wollenweber B, Porter J R, Schellberg J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Journal of Agronomy and Crop Science, 2003, 189(3):142-150.
doi: 10.1046/j.1439-037X.2003.00025.x
[2] Wang X, Huang M, Zhou Q, et al. Physiological and proteomic mechanisms of waterlogging priming to improves tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 2016, 132(9):175-182.
doi: 10.1016/j.envexpbot.2016.09.003
[3] Yu M, Mao S, Chen G, et al. QTLs for waterlogging tolerance at germination and seedling stages in population of recombinant inbred lines derived from a cross between synthetic and cultivated wheat genotypes. Journal of Integrative Agriculture, 2014, 13(1):31-39.
doi: 10.1016/S2095-3119(13)60354-8
[4] 宋桂成, 史高玲, 张平平, 等. 拔节期渍水对小麦籽粒品质相关性状的影响. 核农学报, 2021, 35(1):238-244.
doi: 10.11869/j.issn.100-8551.2021.01.0238
[5] 马尚宇, 王艳艳, 黄正来, 等. 渍水对小麦生长的影响及耐渍栽培技术研究进展. 麦类作物学报, 2019, 39(7):835-843.
[6] 佟汉文, 刘易科, 朱展望, 等. 作物耐渍鉴定与评价方法的研究进展. 作物杂志, 2015(6):10-15.
[7] Poysa V W. The genetic control of low temperature, ice- encasement, and flooding tolerances by chromosomes 5A, 5B, and 5D in wheat. Cereal Research Communication, 1984, 36(3):135-141.
doi: 10.1556/CRC.36.2008.1.14
[8] 曹旸, 蔡士宾. 小麦品种资源的早熟性鉴定初报. 作物品种资源, 1984(3):26-29,48.
[9] Malik A I, Colmer T D, Lambers H, et al. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Functional Plant Biology, 2001, 28(11):1121-1131.
doi: 10.1071/PP01089
[10] Boru G, Ginkel M, Kronstad W E, et al. Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica, 2001, 117 (2):91-98.
doi: 10.1023/A:1003929803920
[11] Li C, Jiang D, Wollenweber B, et al. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Science, 2011, 180(10):672-678.
doi: 10.1016/j.plantsci.2011.01.009
[12] Hayashi T, Yoshida T, Fujii K, et al. Maintained root length density contributes to the waterlogging tolerance in common wheat (Triticum aestivum L.). Field Crops Research, 2013, 152 (3):27-35.
doi: 10.1016/j.fcr.2013.03.020
[13] Ghobadi M E, Ghobadi M, Zebarjadi A. Effect of waterlogging at different growth stages on some morphological traits of wheat varieties. International Journal of Biometeorolgy, 2017, 61(4):635-645.
[14] Wu X, Tang Y, Li C, et al. Individual and combined effects of soil waterlogging and compaction on physiological characteristics of wheat in southwestern China. Field Crops Research, 2018, 215 (10):163-172.
doi: 10.1016/j.fcr.2017.10.016
[15] Setter T L, Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat,barley and oats. Plant and Soil, 2003, 253(1):1-34.
doi: 10.1023/A:1024573305997
[16] Pampana S, Masoni A, Arduini I. Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Research Communications, 2016, 44(4):706-716.
doi: 10.1556/0806.44.2016.026
[17] Arguello M N, Esten Mason R, Roberts T L, et al. Performance of soft red winter wheat subjected to field soil waterlogging: grain yield and yield compoments. Field Crops Research, 2016, 194(4):57-64.
doi: 10.1016/j.fcr.2016.04.040
[18] 刘杨, 石春林, 刘晓宇, 等. 渍害胁迫时期和持续时间对冬小麦产量及其构成因素的影响. 麦类作物学报, 2018, 38(2):239-245.
[19] Raman A, Verulkar S, Mandal N, et al. Drought yield index to select high yielding rice lines under different drought stress severities. Rice, 2012, 5(31):31-39.
doi: 10.1186/1939-8433-5-31
[20] Rosielle A A, Hamblin J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 1981, 21(6):943-946.
doi: 10.2135/cropsci1981.0011183X002100060033x
[21] Araki H, Hamada A, Hossain M, et al. Water logging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Research, 2012, 137:27-36.
doi: 10.1016/j.fcr.2012.09.006
[22] Ramirez V P, Kelly J D. Traits related to drought resistance in common bean. Euphytica, 1998, 99(2):127-136.
doi: 10.1023/A:1018353200015
[23] Singh G, Singh M K, Tyagi B S, et al. Germplasm characterization and selection indices in bread wheat for waterlogged soils in India. Indian Journal of Agricultural Science, 2017, 87(9):1139-1148.
[24] Abdolshahi R, Safarian A, Nazari M, et al. Screening drought- tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Archives of Agronomy and Soil Science, 2013, 59(17):685-704.
doi: 10.1080/03650340.2012.667080
[25] 鲍晓鸣. 小麦耐湿性的鉴定时期及鉴定指标. 上海农业学报, 1997, 13(2):32-38.
[26] 宋桂成, 周淼平, 余桂红, 等. 小麦乙烯转录因子TaERF2响应湿害胁迫的表达分析. 核农学报, 2022, 36(5):876-884.
doi: 10.11869/j.issn.100-8551.2022.05.0876
[27] Li Q, Ding Q, Wang LX, et al. Effects of shading and waterlogging on the photosynthesis and yield performance of winter wheat in Jiangsu province, China. International Journal of Agriculture and Biology, 2019, 21(5):472-478.
[28] Wu X, Tang Y, Li C, et al. Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. Plant Production Science, 2015, 18(3):284-294.
doi: 10.1626/pps.18.284
[29] Khodarahmpour Z, Choukan R, Bihamta M R, et al. Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan Province conditions. Journal of Agricultural Science and Technology, 2011, 13(1):111-121.
[30] Clarke J M, DePauw R M, Townley-Smith T F. Evaluation of methods for quantification of drought tolerance in wheat. Crop Science, 1992, 32(3):7228-7232.
[31] Fischer R A, Maurer R. Drought resistance in spring wheat cultivars. I grain yield responses. Australian Journal of Agricultural Research, 1978, 29(5):897-912.
doi: 10.1071/AR9780897
[1] 王义凡, 任宁, 董向阳, 赵亚南, 叶优良, 汪洋, 黄玉芳. 控释尿素与普通尿素配施对小麦产量、氮素吸收及经济效益的影响[J]. 作物杂志, 2023, (5): 117–123
[2] 杨梅, 杨卫君, 高文翠, 贾永红, 张金汕. 生物质炭与氮肥配施对灌区冬小麦干物质转运、农艺性状及产量的影响[J]. 作物杂志, 2023, (5): 138–144
[3] 黄杰, 葛昌斌, 王君, 曹燕燕, 乔冀良, 廖平安, 宋丹阳, 卢雯瑩. 基于主成分回归模型的漯河市小麦相对气象千粒重的模拟模型[J]. 作物杂志, 2023, (5): 212–218
[4] 刘书含, 陈磊, 张建朝, 胡甘, 孙君艳, 刘东涛, 王军卫. TMS5基因在小麦BNS不育系育性转换中的差异表达分析[J]. 作物杂志, 2023, (5): 24–29
[5] 张东旭, 胡丹珠, 闫金龙, 冯丽云, 邬志远, 张俊灵, 李岩华. 不同茬口晚播小麦喷施链霉菌剂对产量及光合特性的影响[J]. 作物杂志, 2023, (5): 255–263
[6] 葛昌斌, 秦素研, 乔冀良, 王君, 齐双丽, 卢雯瑩, 张振永. 2001-2021年豫南和江苏淮河以南审定小麦品种农艺、品质性状和病害演变对比分析[J]. 作物杂志, 2023, (5): 49–58
[7] 杨程, 张德奇, 杜思梦, 张丽佳, 靳海洋, 李滢, 邵运辉, 王汉芳, 方保停, 李向东, 刘美君. 黑暗和强光下脱水对小麦离体叶片光系统活性的影响[J]. 作物杂志, 2023, (5): 98–103
[8] 张明伟, 丁锦峰, 朱新开, 郭文善. 稻茬过晚播小麦高产密度和氮肥调控效应分析[J]. 作物杂志, 2023, (4): 126–135
[9] 宋晓, 张珂珂, 岳克, 黄晨晨, 黄绍敏, 孙建国, 郭腾飞, 郭斗斗, 张水清, 裴敏楠. 不同氮效率品种小麦根际土壤酶活性和细菌群落的差异[J]. 作物杂志, 2023, (4): 188–194
[10] 傅晓艺, 王红光, 刘志连, 李东晓, 何明琦, 李瑞奇. 水分胁迫对不同小麦幼苗期生长的影响及抗旱品种筛选[J]. 作物杂志, 2023, (4): 224–229
[11] 刘颖, 顾昀怿, 张伟杨, 杨建昌. 水分与氮素及其互作调控小麦产量和水氮利用效率研究进展[J]. 作物杂志, 2023, (4): 7–15
[12] 李宏生, 李绍祥, 杨忠慧, 杨家李, 刘琨, 熊世安, 李富乾, 郭辉, 杨木军. 温光敏两系杂交小麦杂交种纯度的表型和标记检测比较[J]. 作物杂志, 2023, (4): 71–76
[13] 赵鹏鹏, 李鲁华, 任明见, 安畅, 洪鼎立, 李欣, 徐如宏. 小麦GzCIPK7-5B基因的生物信息学及表达分析[J]. 作物杂志, 2023, (4): 77–84
[14] 李浩然, 李瑞奇, 李雁鸣. 海河平原小麦行距形式变化及其影响因素研究综述[J]. 作物杂志, 2023, (3): 12–19
[15] 王硕立, 丁松爽, 王荣浩, 李林林, 吴创, 王剑, 时向东. 我国云南和尼加拉瓜雪茄烟叶矿质元素含量和感官质量差异及其相关分析[J]. 作物杂志, 2023, (3): 139–147
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!