作物杂志,2023, 第5期: 3036 doi: 10.16035/j.issn.1001-7283.2023.05.005
Song Guicheng(), Yu Guihong, Zhang Peng, Ma Hongxiang
摘要:
为评价拔节期不同小麦耐渍性,以34份品种(系)为试验材料,设置渍水和常规栽培2个处理,测量产量、千粒重和粒径等相关指标,通过相关分析、因子分析和综合得分等对耐渍性进行综合评价。结果显示,渍水14d时产量、千粒重和粒径显著下降,粒径与千粒重显著相关,千粒重和粒径的降低是产量下降的主要原因之一;耐胁迫指数(STI)、生产力几何平均值(GMP)、平均生产力(MP)、调和平均数(HM)、平均相对生产力(MRP)、相对生产力(RP)与正常条件下均产(Yp)、胁迫条件下均产(Ys)显著正相关,适于筛选渍水胁迫和正常环境下的高产潜力品种;胁迫敏感指数(SSI)、耐湿指数(WTI)、抗逆性(TOL)与Ys呈显著负相关,适于筛选渍水胁迫环境下的高产潜力品种;因子1主要解释了GMP、HM、MP、WTI和RP,反映产量特性,因子2主要解释了SSI、TOL和STI,反映耐渍特性;GMP、HM、MP、STI、WTI和RP被提取的比例均在0.85以上,被解释程度高,适于品种(系)耐渍性的初步筛选。通过因子综合得分和耐胁迫得分(STS)发现,国豪麦6号、扬15-133、扬16-157、扬麦20、华麦1064、鄂麦166、华麦1061、安农170、宁麦9号、华麦1063和皖科125的综合得分和STS值均高于耐渍对照扬麦25,可见综合得分0.30以上或STS值4.00以上的为耐渍品种(系)。因此,由GMP、HM、MP、STI、WTI和RP获得的综合得分和STS值可作为筛选耐渍种质资源的指标。
[1] |
Wollenweber B, Porter J R, Schellberg J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Journal of Agronomy and Crop Science, 2003, 189(3):142-150.
doi: 10.1046/j.1439-037X.2003.00025.x |
[2] |
Wang X, Huang M, Zhou Q, et al. Physiological and proteomic mechanisms of waterlogging priming to improves tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 2016, 132(9):175-182.
doi: 10.1016/j.envexpbot.2016.09.003 |
[3] |
Yu M, Mao S, Chen G, et al. QTLs for waterlogging tolerance at germination and seedling stages in population of recombinant inbred lines derived from a cross between synthetic and cultivated wheat genotypes. Journal of Integrative Agriculture, 2014, 13(1):31-39.
doi: 10.1016/S2095-3119(13)60354-8 |
[4] |
宋桂成, 史高玲, 张平平, 等. 拔节期渍水对小麦籽粒品质相关性状的影响. 核农学报, 2021, 35(1):238-244.
doi: 10.11869/j.issn.100-8551.2021.01.0238 |
[5] | 马尚宇, 王艳艳, 黄正来, 等. 渍水对小麦生长的影响及耐渍栽培技术研究进展. 麦类作物学报, 2019, 39(7):835-843. |
[6] | 佟汉文, 刘易科, 朱展望, 等. 作物耐渍鉴定与评价方法的研究进展. 作物杂志, 2015(6):10-15. |
[7] |
Poysa V W. The genetic control of low temperature, ice- encasement, and flooding tolerances by chromosomes 5A, 5B, and 5D in wheat. Cereal Research Communication, 1984, 36(3):135-141.
doi: 10.1556/CRC.36.2008.1.14 |
[8] | 曹旸, 蔡士宾. 小麦品种资源的早熟性鉴定初报. 作物品种资源, 1984(3):26-29,48. |
[9] |
Malik A I, Colmer T D, Lambers H, et al. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Functional Plant Biology, 2001, 28(11):1121-1131.
doi: 10.1071/PP01089 |
[10] |
Boru G, Ginkel M, Kronstad W E, et al. Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica, 2001, 117 (2):91-98.
doi: 10.1023/A:1003929803920 |
[11] |
Li C, Jiang D, Wollenweber B, et al. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Science, 2011, 180(10):672-678.
doi: 10.1016/j.plantsci.2011.01.009 |
[12] |
Hayashi T, Yoshida T, Fujii K, et al. Maintained root length density contributes to the waterlogging tolerance in common wheat (Triticum aestivum L.). Field Crops Research, 2013, 152 (3):27-35.
doi: 10.1016/j.fcr.2013.03.020 |
[13] | Ghobadi M E, Ghobadi M, Zebarjadi A. Effect of waterlogging at different growth stages on some morphological traits of wheat varieties. International Journal of Biometeorolgy, 2017, 61(4):635-645. |
[14] |
Wu X, Tang Y, Li C, et al. Individual and combined effects of soil waterlogging and compaction on physiological characteristics of wheat in southwestern China. Field Crops Research, 2018, 215 (10):163-172.
doi: 10.1016/j.fcr.2017.10.016 |
[15] |
Setter T L, Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat,barley and oats. Plant and Soil, 2003, 253(1):1-34.
doi: 10.1023/A:1024573305997 |
[16] |
Pampana S, Masoni A, Arduini I. Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Research Communications, 2016, 44(4):706-716.
doi: 10.1556/0806.44.2016.026 |
[17] |
Arguello M N, Esten Mason R, Roberts T L, et al. Performance of soft red winter wheat subjected to field soil waterlogging: grain yield and yield compoments. Field Crops Research, 2016, 194(4):57-64.
doi: 10.1016/j.fcr.2016.04.040 |
[18] | 刘杨, 石春林, 刘晓宇, 等. 渍害胁迫时期和持续时间对冬小麦产量及其构成因素的影响. 麦类作物学报, 2018, 38(2):239-245. |
[19] |
Raman A, Verulkar S, Mandal N, et al. Drought yield index to select high yielding rice lines under different drought stress severities. Rice, 2012, 5(31):31-39.
doi: 10.1186/1939-8433-5-31 |
[20] |
Rosielle A A, Hamblin J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 1981, 21(6):943-946.
doi: 10.2135/cropsci1981.0011183X002100060033x |
[21] |
Araki H, Hamada A, Hossain M, et al. Water logging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Research, 2012, 137:27-36.
doi: 10.1016/j.fcr.2012.09.006 |
[22] |
Ramirez V P, Kelly J D. Traits related to drought resistance in common bean. Euphytica, 1998, 99(2):127-136.
doi: 10.1023/A:1018353200015 |
[23] | Singh G, Singh M K, Tyagi B S, et al. Germplasm characterization and selection indices in bread wheat for waterlogged soils in India. Indian Journal of Agricultural Science, 2017, 87(9):1139-1148. |
[24] |
Abdolshahi R, Safarian A, Nazari M, et al. Screening drought- tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Archives of Agronomy and Soil Science, 2013, 59(17):685-704.
doi: 10.1080/03650340.2012.667080 |
[25] | 鲍晓鸣. 小麦耐湿性的鉴定时期及鉴定指标. 上海农业学报, 1997, 13(2):32-38. |
[26] |
宋桂成, 周淼平, 余桂红, 等. 小麦乙烯转录因子TaERF2响应湿害胁迫的表达分析. 核农学报, 2022, 36(5):876-884.
doi: 10.11869/j.issn.100-8551.2022.05.0876 |
[27] | Li Q, Ding Q, Wang LX, et al. Effects of shading and waterlogging on the photosynthesis and yield performance of winter wheat in Jiangsu province, China. International Journal of Agriculture and Biology, 2019, 21(5):472-478. |
[28] |
Wu X, Tang Y, Li C, et al. Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. Plant Production Science, 2015, 18(3):284-294.
doi: 10.1626/pps.18.284 |
[29] | Khodarahmpour Z, Choukan R, Bihamta M R, et al. Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan Province conditions. Journal of Agricultural Science and Technology, 2011, 13(1):111-121. |
[30] | Clarke J M, DePauw R M, Townley-Smith T F. Evaluation of methods for quantification of drought tolerance in wheat. Crop Science, 1992, 32(3):7228-7232. |
[31] |
Fischer R A, Maurer R. Drought resistance in spring wheat cultivars. I grain yield responses. Australian Journal of Agricultural Research, 1978, 29(5):897-912.
doi: 10.1071/AR9780897 |
[1] | 王义凡, 任宁, 董向阳, 赵亚南, 叶优良, 汪洋, 黄玉芳. 控释尿素与普通尿素配施对小麦产量、氮素吸收及经济效益的影响[J]. 作物杂志, 2023, (5): 117123 |
[2] | 杨梅, 杨卫君, 高文翠, 贾永红, 张金汕. 生物质炭与氮肥配施对灌区冬小麦干物质转运、农艺性状及产量的影响[J]. 作物杂志, 2023, (5): 138144 |
[3] | 黄杰, 葛昌斌, 王君, 曹燕燕, 乔冀良, 廖平安, 宋丹阳, 卢雯瑩. 基于主成分回归模型的漯河市小麦相对气象千粒重的模拟模型[J]. 作物杂志, 2023, (5): 212218 |
[4] | 刘书含, 陈磊, 张建朝, 胡甘, 孙君艳, 刘东涛, 王军卫. TMS5基因在小麦BNS不育系育性转换中的差异表达分析[J]. 作物杂志, 2023, (5): 2429 |
[5] | 张东旭, 胡丹珠, 闫金龙, 冯丽云, 邬志远, 张俊灵, 李岩华. 不同茬口晚播小麦喷施链霉菌剂对产量及光合特性的影响[J]. 作物杂志, 2023, (5): 255263 |
[6] | 葛昌斌, 秦素研, 乔冀良, 王君, 齐双丽, 卢雯瑩, 张振永. 2001-2021年豫南和江苏淮河以南审定小麦品种农艺、品质性状和病害演变对比分析[J]. 作物杂志, 2023, (5): 4958 |
[7] | 杨程, 张德奇, 杜思梦, 张丽佳, 靳海洋, 李滢, 邵运辉, 王汉芳, 方保停, 李向东, 刘美君. 黑暗和强光下脱水对小麦离体叶片光系统活性的影响[J]. 作物杂志, 2023, (5): 98103 |
[8] | 张明伟, 丁锦峰, 朱新开, 郭文善. 稻茬过晚播小麦高产密度和氮肥调控效应分析[J]. 作物杂志, 2023, (4): 126135 |
[9] | 宋晓, 张珂珂, 岳克, 黄晨晨, 黄绍敏, 孙建国, 郭腾飞, 郭斗斗, 张水清, 裴敏楠. 不同氮效率品种小麦根际土壤酶活性和细菌群落的差异[J]. 作物杂志, 2023, (4): 188194 |
[10] | 傅晓艺, 王红光, 刘志连, 李东晓, 何明琦, 李瑞奇. 水分胁迫对不同小麦幼苗期生长的影响及抗旱品种筛选[J]. 作物杂志, 2023, (4): 224229 |
[11] | 刘颖, 顾昀怿, 张伟杨, 杨建昌. 水分与氮素及其互作调控小麦产量和水氮利用效率研究进展[J]. 作物杂志, 2023, (4): 715 |
[12] | 李宏生, 李绍祥, 杨忠慧, 杨家李, 刘琨, 熊世安, 李富乾, 郭辉, 杨木军. 温光敏两系杂交小麦杂交种纯度的表型和标记检测比较[J]. 作物杂志, 2023, (4): 7176 |
[13] | 赵鹏鹏, 李鲁华, 任明见, 安畅, 洪鼎立, 李欣, 徐如宏. 小麦GzCIPK7-5B基因的生物信息学及表达分析[J]. 作物杂志, 2023, (4): 7784 |
[14] | 李浩然, 李瑞奇, 李雁鸣. 海河平原小麦行距形式变化及其影响因素研究综述[J]. 作物杂志, 2023, (3): 1219 |
[15] | 王硕立, 丁松爽, 王荣浩, 李林林, 吴创, 王剑, 时向东. 我国云南和尼加拉瓜雪茄烟叶矿质元素含量和感官质量差异及其相关分析[J]. 作物杂志, 2023, (3): 139147 |
|