作物杂志,2023, 第5期: 43–48 doi: 10.16035/j.issn.1001-7283.2023.05.007

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

利用玉米F1群体进行玉米全株鲜重的全基因组预测分析

杨宗莹1(), 肖贵2(), 张红伟3()   

  1. 1吉林农业大学农学院,130118,吉林长春
    2定西市农业科学研究院,743000,甘肃定西
    3中国农业科学院作物科学研究所,100193,北京
  • 收稿日期:2022-04-06 修回日期:2022-07-27 出版日期:2023-10-15 发布日期:2023-10-16
  • 通讯作者: 张红伟,研究方向为玉米分子育种,E-mail:zhanghongwei@caas.cn
  • 作者简介:杨宗莹,研究方向为玉米遗传育种,E-mail:yangzongying111@yeah.net;|肖贵为共同第一作者,研究方向为优良牧草新品种选育及示范推广,E-mail:294301232@qq.com
  • 基金资助:
    中国农业科学院创新工程(CAAS-ZDRW202004)

Whole-Genome Predictive Analysis of Fresh Weight per Plant Using the Maize F1 Population

Yang Zongying1(), Xiao Gui2(), Zhang Hongwei3()   

  1. 1College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
    2Dingxi Academy of Agricultural Sciences, Dingxi 743000, Gansu, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
  • Received:2022-04-06 Revised:2022-07-27 Online:2023-10-15 Published:2023-10-16

摘要:

基因组预测是一种可以提高育种效率的分子育种技术。利用中北410(SN915,YH-1)和北农368(60271,2193)的亲本为父本与120个玉米自交系组配4个杂交群体。利用10k的SNP芯片对亲本进行基因分型,在3个环境下对4个群体的全株鲜重进行评价。结果表明,从环境来看,甘肃种植的全株鲜重最高;从群体来看,群体2的鲜重最高;4个群体的变异系数为0.27~0.33,表明4个测交群体的表型变异较大。通过实施一对一(利用其中一个群体为训练群体分别预测其他群体)以及多对一(利用3个群体及第4个群体的一半作为训练群体预测第4个群体的另一半)的预测方案,表明杂交群体间(一对一)的基因组预测准确性低于群体内(多对一)的基因组预测准确性,亲缘关系近的群体间预测效果更好。通过在训练群体中加入与预测群体有亲缘关系的材料可以改进基因组预测的效果。

关键词: 玉米, 基因组预测, 训练群体, 生物量

Abstract:

Genomic prediction is a molecular technique that can improve the efficiency of molecular breeding. In this study, 120 maize inbred lines were crossed to the parents of Zhongbei 410 (SN915, YH-1) and Beinong 368 (60271, 2193) to construct four testcross populations. The 10k SNP chip was used to genotype the parental lines, and the whole-plant fresh weight of the four populations were evaluated in three environments. The results showed that the fresh weight was highest in Gansu environment, and population 2 had the highest whole plant fresh weight. The coefficients of variances of the four populations ranged from 0.27 to 0.33, indicating the phenotypic variations of the four populations were great. By implementing the one-to-one (one population was used as the training population to predict other populations) and multiple-to-one (three populations and a half of the forth population were used as the training population to predict the other half of the forth population) prediction schemes, we found that the prediction accuracy of one-to-one genome prediction was lower than that of the multiple-to-one prediction, and closely related groups predicted better. The accuracy of genomic prediction could be improved by adding the relatives of the prediction population in the training population and optimizing the relationship between the training population and the predicted population.

Key words: Maize, Genomic prediction, Training population, Biomass

图1

不同环境中材料及不同群体全株鲜重汇总

表1

4个群体鲜重基本统计数据汇总

群体Population 群体大小Population size 平均值Mean (kg) 标准差SD 最小值Minimum (kg) 最大值Maximum (kg) 变异系数CV
P1 324 1.18 0.38 0.35 2.38 0.32
P2 346 1.36 0.37 0.49 2.64 0.27
P3 342 1.13 0.37 0.41 2.05 0.33
P4 343 1.26 0.36 0.55 2.76 0.29

图2

3个环境中全株鲜重相关性分析 “**”和“***”分别表示0.01和0.001水平差异极显著

图3

测序标记及遗传相似性分析 (a) 测序标记的分布;(b) 所有亲本材料进化树分析,1-120为母本材料,121、122、123和124分别为中北410的亲本(SN915,YH-1)和北农368父母本(60271,2193);(c) 所有标记的4个群体的主成分分析,蓝色、红色、绿色和黄色分别为P1、P2、P3和P4;(d) 利用热图分析4个群体的亲缘关系,从左到右分别是P1、P2、P3和P4

图4

利用GBLUP和BayesB模型对不同群体全株鲜重的全基因组预测 (a) 以1个群体作为训练群体预测其他群体,(b) 以随机1个群体的随机一半材料加剩余3个群体作为训练群体预测剩余半个群体

[1] 李少昆, 赵久然, 董树亭, 等. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11):1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
[2] Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (50):20260-20264.
[3] 闫亚飞. 河套灌区不同饲草生产性能与品质研究. 北京: 中国农业科学院, 2016.
[4] Iwata H. Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics, 2010, 9(2):166-177.
doi: 10.1093/bfgp/elq001
[5] Heffner E L, Lorenz A J, Jannink J L, et al. Plant breeding with genomic selection: gain per unit time and cost. Crop Science, 2010, 50(5):1681-1690.
doi: 10.2135/cropsci2009.11.0662
[6] Crossa J, Pérez P, Hickey J M, et al. Genomic prediction in CIMMYT maize and wheat breeding program. Heredity, 2013, 112 (1):48.
doi: 10.1038/hdy.2013.16
[7] Li D, Wang P, Gu R, et al. Genetic relatedness and the ratio of subpopulation-common alleles are related in genomic prediction across structured subpopulations in maize. Plant Breeding, 2019, 138(6):802-809.
doi: 10.1111/pbr.v138.6
[8] Xu S, Zhu D, Zhang Q. Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34):12456-12461.
[9] Cui Y, Li R, Li G, et al. Hybrid breeding of rice via genomic selection. Plant Biotechnology Journal, 2020, 18(1):57-67.
doi: 10.1111/pbi.13170 pmid: 31124256
[10] Huang X, Yang S, Gong J, et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 2015, 6(7052):6258.
doi: 10.1038/ncomms7258
[11] Nickolai A, Tai S, Wang W, et al. SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Research, 2015 (D1):1023-1027.
[12] Hadasch S, Simko I, Hayes R J, et al. Comparing the predictive abilities of phenotypic and marker-assisted selection methods in a biparental lettuce population. Plant Genome, 2016, 9(1):1-11.
[13] Yang J, Mezmouk S, Baumgarten A, et al. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genetics, 2016, 13(9):e1007019.
doi: 10.1371/journal.pgen.1007019
[14] Bates D, Mächler M, Bolker B, et al. Fitting linear mixed-effects models using lme4. Statistics & Computing, 2014, 1406(1):133-199.
[15] Hallauer A R, Carena M J, Miranda Filho J B. Quantitative genetics in maize breeding. New York: Springer Science & Business Media, 2010.
[16] Murray M G, Thompson C L, Wendel J F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8 (19):4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[17] Pérez P, Campos G D L. Genome-wide regression and prediction with the BGLR statistical package. Genetics, 2014, 198(2):483-495.
doi: 10.1534/genetics.114.164442 pmid: 25009151
[18] Liu X, Wang H, Wang H, et al. Factors affecting genomic selection revealed by empirical evidence in maize. The Crop Journal, 2018, 6(4):341-352.
doi: 10.1016/j.cj.2018.03.005
[19] Dias K O D G, Gezan S A, Guimarães C T, et al. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi- environment trials. Heredity, 2018, 121(1):24-37.
doi: 10.1038/s41437-018-0053-6
[20] Massman J M, Gordillo A, Lorenzana R E, et al. Genomewide predictions from maize single-cross data. Theoretical and Applied Genetics, 2013, 126(1):13-22.
doi: 10.1007/s00122-012-1955-y pmid: 22886355
[21] Hayes B J, Bowman P J, Chamberlain A C, et al. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics Selection Evolution, 2009, 41(1):1-9.
doi: 10.1186/1297-9686-41-1
[22] 刘策, 孟焕文, 程智慧. 植物全基因组选择育种技术原理与研究进展. 分子植物育种, 2020, 18(16):5335-5342.
[23] 陈雨, 姜淑琴, 孙炳蕊, 等. 基因组选择及其在作物育种中的应用. 广东农业科学, 2017, 44(9):1-7.
[1] 曹庆军, 李刚, 杨浩, 娄玉勇, 杨粉团, 孔凡丽, 李辛琲, 赵新凯, 姜晓莉. 不同耕作方式对春玉米种床质量的影响及其与幼苗群体建成和产量的关系[J]. 作物杂志, 2023, (5): 249–254
[2] 于乐, 李林, 黄红娟, 黄兆峰, 朱文达, 魏守辉. 湖北省玉米田杂草种类组成及群落特征[J]. 作物杂志, 2023, (5): 272–279
[3] 曲海涛, 李忠南, 王越人, 马艺文, 相洋, 邬生辉, 谭倬, 王纯, 魏强, 罗瑶, 李光发. 玉米百粒重遗传育种效应研究[J]. 作物杂志, 2023, (5): 66–70
[4] 杨密, 王美娟, 许海涛. 不同生态区玉米自交系苞叶动态发育差异性研究[J]. 作物杂志, 2023, (5): 81–90
[5] 袁刘正, 王会强, 王秋岭, 朱世蝶, 赵月强, 袁曼曼, 王会涛, 张运栋, 柳家友, 袁永强. 遮阴条件下玉米自交系配合力与遗传效应分析[J]. 作物杂志, 2023, (4): 104–109
[6] 郑飞, 陈静, 崔亚坤, 孔令杰, 孟庆长, 李杰, 刘瑞响, 张美景, 赵文明, 陈艳萍. 淮北不同生态区丰产稳产宜机收玉米新品种筛选[J]. 作物杂志, 2023, (4): 110–117
[7] 王丽萍, 白岚方, 王天昊, 王宵璇, 白云鹤, 王玉芬. 不同施氮水平对青贮玉米植株氮素积累和转运的影响[J]. 作物杂志, 2023, (4): 165–173
[8] 李雨新, 卢敏, 赵久然, 王荣焕, 徐田军, 吕天放, 蔡万涛, 张勇, 薛洪贺, 刘月娥. 京津唐夏玉米区生产现状调研分析[J]. 作物杂志, 2023, (4): 174–181
[9] 刘松涛, 田再民, 刘子刚, 高志佳, 张静, 贺东刚, 黄智鸿, 兰鑫. 基于转录组测序揭示玉米抗倒伏相关基因和代谢通路[J]. 作物杂志, 2023, (4): 31–37
[10] 谢文锦, 李方明, 李宁, 杨海龙, 付俊, 张中伟, 高旭东, 丰光. 基于GGE双标图的北方地区鲜食糯玉米产量和品质性状及试点鉴别力分析[J]. 作物杂志, 2023, (4): 85–90
[11] 温胜慧, 杨俊伟, 王洋, 李公建, 翁建峰, 段灿星, 贾鑫, 王建军. 玉米抗真菌病害基因挖掘与分子育种利用研究进展[J]. 作物杂志, 2023, (3): 1–11
[12] 常青, 李立军, 渠佳慧, 张艳丽, 韩冬雨, 赵鑫瑶. 土默川平原麦后复种饲用玉米‖油菜模式的增产优势及氮素利用效率[J]. 作物杂志, 2023, (3): 167–174
[13] 郭书磊, 王瑛, 魏良明, 张新, 刘焱, 吴伟华, 卢道文, 雷晓兵, 王振华, 鲁晓民. 不同生态条件下玉米产量影响因素分析[J]. 作物杂志, 2023, (3): 205–214
[14] 高沐甜, 邱冠杰, 朱通通, 李瑞莲, 邓敏, 罗红兵, 黄成. 玉米―大刍草渗入系群体的剑叶遗传基础解析[J]. 作物杂志, 2023, (3): 51–57
[15] 李忠南, 王越人, 马艺文, 相洋, 邬生辉, 曲海涛, 李福林, 张淑琴, 李光发. 基于玉米DH系分离群体叶鞘、花丝、花药与穗轴颜色性状的遗传分析[J]. 作物杂志, 2023, (3): 75–79
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!