作物杂志,2024, 第4期: 144–151 doi: 10.16035/j.issn.1001-7283.2024.04.018

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

外源油菜素内酯缓解谷子穗分化期干旱胁迫的机理研究

杜杰(), 冯宇, 夏清, 智慧, 王文霞()   

  1. 吕梁学院生命科学系,033000,山西吕梁
  • 收稿日期:2023-12-25 修回日期:2024-06-11 出版日期:2024-08-15 发布日期:2024-08-14
  • 通讯作者: 王文霞,主要从事作物栽培研究,E-mail:15797688640@163.com
  • 作者简介:杜杰,主要从事作物高产栽培研究,E-mail:dujie1881@163.com
  • 基金资助:
    山西省青年科学基金(202203021222320);山西省高等学校科技创新项目(2023L377);吕梁市高层次科技人才计划项目(2023RC20)

Mechanism of Exogenous Brassinolide in Alleviating Drought Stress Injury at Panicle Differentiation Stage in Foxtail Millet

Du Jie(), Feng Yu, Xia Qing, Zhi Hui, Wang Wenxia()   

  1. Department of Life Sciences, Lüliang University, Lüliang 033000, Shanxi, China
  • Received:2023-12-25 Revised:2024-06-11 Online:2024-08-15 Published:2024-08-14

摘要:

为探究油菜素内酯对干旱胁迫下谷子穗分化期光合特性、抗氧化系统及氮代谢的调控作用,以优质谷子晋谷21号为供试材料,采用盆栽试验,设置正常对照(CK)、喷施清水后干旱(DS)和喷施油菜素内酯后干旱(BR)3个处理,待植株生长至穗分化期各处理组叶面分别喷施清水和0.1 μmol/L的油菜素内酯,干旱结束后对所有处理的谷子光合作用参数、过氧化氢(H2O2)、丙二醛(MDA)含量、渗透调节物质、抗氧化酶活性、氮代谢关键酶活性和产量及其构成进行测定与分析。结果表明,干旱胁迫极大地阻碍了穗分化期谷子生长发育,外源油菜素内酯的应用明显缓解了旱害对谷子的影响,产量显著提高17.29%,穗粒重增加8.62%,空秕率下降18.46%,谷子净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、叶绿素含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、可溶性糖、游离脯氨酸、硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)和谷氨酸脱氢酶(GDH)活性等指标不同程度提高,并显著降低H2O2和MDA含量。因此,喷施0.1 μmol/L的油菜素内酯通过提高Pn、叶绿素值和渗透调节物质含量、增加抗氧化酶和氮代谢关键酶活性、降低活性氧和MDA含量,促进植株体内活性氧自由基清除、维持植株碳氮代谢平衡等来缓解穗分化期干旱胁迫对谷子生长发育及产量的降低。

关键词: 谷子, 干旱胁迫, 油菜素内酯, 产量, 氮代谢

Abstract:

A pot experiment was conducted to investigate the regulatory effects of brassinolide on photosynthesis, antioxidant systems, and nitrogen metabolism in the high-quality foxtail millet variety, Jingu 21, under drought stress during panicle differentiation. Three treatment groups were established: a normal control (CK), a drought stress after water spraying (DS), and a drought stress after brassinolide spraying (BR). Upon reaching panicle differentiation, the treatment groups were separately sprayed with water and 0.1 μmol/L brassinolide on the leaf surface. After the cessation of drought stress, parameters including photosynthesis indices, hydrogen peroxide (H2O2), malondialdehyde (MDA) contents, osmotic regulators, antioxidant enzyme activity, nitrogen metabolism key enzyme activity, yield, and its components were measured and analyzed for all treatments. The results showed that drought stress significantly impeded the growth and development of foxtail millet during the panicle differentiation stage, but the application of exogenous brassinolide could mitigate these adverse effects. Yield and grain weight per panicle were increased by 17.29% and 8.62%, respectively, while the empty seed rate was decreased by 18.46%. Several parameters like net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), chlorophyll content, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) activities, soluble sugar, free proline, nitrate reductase (NR), glutamine synthase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) activities increased to varying degrees. H2O2 and MDA contents were significantly reduced. Consequently, spraying 0.1 μmol/L brassinolide could alleviate the reduction of foxtail millet growth and yield under drought stress during panicle differentiation period by increasing photosynthesis, chlorophyll content, osmotic regulators, antioxidant enzymes, nitrogen metabolism enzymes, and reducing reactive oxygen species and MDA content, facilitating reactive oxygen radicals scavenging, and maintaining the balance of carbon and nitrogen metabolism in the plant.

Key words: Foxtail millet, Drought stress, Brassinolide, Yield, Nitrogen metabolism

表1

油菜素内酯对干旱胁迫下谷子产量及其构成因素的影响

处理
Treatment
穗长
Panicle length
(cm)
穗粒重
Grain weight per
panicle (g)
穗码数
Spikelet number
per panicle
千粒重
1000-grain
weight (g)
空秕率
Sterile grain
rate (%)
产量
Yield
(kg/hm2)
CK 23.16±0.59a 19.01±0.63a 108.67±1.43a 3.13±0.09a 10.13±0.14c 4453.97±114.01a
DS 23.03±0.76a 17.06±0.75b 107.33±3.26a 3.01±0.07b 15.98±0.11a 3145.95±83.92c
BR 23.04±1.08a 18.53±0.43a 108.33±3.43a 3.05±0.08b 13.03±0.16b 3689.85±102.61b

图1

油菜素内酯影响干旱胁迫下谷子产量箱线图 箱线图中横线数据为中位数,“**”代表在P < 0.05水平上有显著差异性。

图2

油菜素内酯对干旱胁迫下谷子光合作用的影响 不同小写字母代表P < 0.05水平上有显著差异性,下同。

图3

油菜素内酯对干旱胁迫下谷子SPAD、MDA和渗透调节物质含量的影响

图4

油菜素内酯对干旱胁迫下谷子过氧化氢和抗氧化酶活性的影响

图5

油菜素内酯对干旱胁迫下谷子氮代谢的影响

[1] 赵利蓉, 马珂, 张丽光, 等. 不同生态区谷子品种农艺性状和品质分析. 作物杂志, 2022(2):44-53.
[2] Pan J W, Zhen L, Wang Q G, et al. Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biology, 2018, 18(1):315.
doi: 10.1186/s12870-018-1533-9 pmid: 30497407
[3] Wang Y Q, Li L, Tang S, et al. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genetics, 2016, 17(1):57.
[4] 刘园, 刘布春, 梅旭荣, 等. 区域粮食产量因灾损失评估之北方五省灾情-产量模型再检验. 中国农业气象, 2023, 44(11):1009-1021.
[5] Qin L, Chen E Y, Li F F, et al. Genome-wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L.). International Journal of Molecular Sciences, 2020, 21(22):8520.
[6] 张艾英, 郭二虎, 范惠萍, 等. 谷子不同生育时期水分胁迫抗旱生理特性研究. 山西农业科学, 2014, 42(7):669-671.
[7] 李丽丽, 侯智远, 卢海博, 等. 干旱胁迫和复水对‘张杂谷3号’光合特性和产量的影响. 河北农业大学学报, 2017, 40(4):19-24.
doi: 10.13320/ j.cnki.jauh.2017.0075
[8] Wang J, Sun Z X, Wang X N, et al. Transcriptome-based analysis of key pathways relating to yield formation stage of foxtail millet under different drought stress conditions. Frontiers in Plant Science, 2022(13):1110910.
[9] Wang Q, Yu F F, Xie Q. Balancing growth and adaptation to stress: Crosstalk between brassinosteroid and abscisic acid signaling. Plant Cell and Environment, 2020, 43(10):2325-2335.
[10] Chen J N, Nolan T M, Ye H X, et al. Arabidopsis wrky46, wrky54 and wrky70 transcription factors are involved in brassinosteroid- regulated plant growth and drought responses. Plant Cell, 2017, 29(6):1425-1439.
[11] Krishna P, Prasad B D, Rahman T. Brassinosteroid action in plant abiotic stress tolerance. Methods in Molecular Biology, 2017, 1564:193-202.
doi: 10.1007/978-1-4939-6813-8_16 pmid: 28124256
[12] Huang J Y, Ma S J, Zhang K Y, et al. Genome-wide identification of gramineae brassinosteroid-related genes and their roles in plant architecture and salt stress adaptation. International Journal of Molecular Sciences, 2022, 23(10):5551.
[13] 缐旭林, 张德, 张仲兴, 等. 2,4-表油菜素内酯对干旱胁迫下垂丝海棠生理特性的影响. 干旱地区农业研究, 2022, 40(3):37-45.
[14] Lone W A, Majeed N, Yaqoob U, et al. Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. Plant Cell Reports, 2022, 41(3):603-617.
[15] Huang L P, Zhang L, Zeng R E, et al. Brassinosteroid priming improves peanut drought tolerance via eliminating inhibition on genes in photosynthesis and hormone signaling. Genes (Basel), 2020, 11(8):919.
[16] Tanveer M, Shahzad B, Sharma A, et al. 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. Plant Physiology and Biochemistry, 2019, 135:295-303.
doi: S0981-9428(18)30560-6 pmid: 30599306
[17] 王永丽, 王珏, 杜金哲, 等. 不同时期干旱胁迫对谷子农艺性状的影响. 华北农学报, 2012, 27(6):125-129.
doi: 10.3969/j.issn.1000-7091.2012.06.025
[18] Zhang R L, Zhi H, Li Y H, et al. Response of multiple tissues to drought revealed by a weighted gene co-expression network analysis in foxtail millet [Setaria italica (L.) P. Beauv.]. Frontiers in Plant Science, 2021, 12:746166.
[19] 权梦萍, 徐佳慧, 尹佳茗, 等. 油菜素内酯调控植物响应非生物逆境胁迫的生理机制. 植物保护学报, 2023, 50(1):22-31.
[20] Ghasemi A, Farzaneh S, Moharramnejad S, et al. Impact of 24-epibrassinolide, spermine, and silicon on plant growth, antioxidant defense systems, and osmolyte accumulation of maize under water stress. Scientific Reports, 2022, 12(1):14648.
doi: 10.1038/s41598-022-18229-1 pmid: 36030324
[21] 陈燕华, 王亚梁, 朱德峰, 等. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究. 中国水稻科学, 2019, 33(5):457-466.
doi: 10.16819/j.1001-7216.2019.9036
[22] 白明义, 彭金荣, 傅向东. 赤霉素和油菜素内酯信号通路双重调控助力小麦新一轮“绿色革命”. 植物学报, 2023, 58(2):194-198.
doi: 10.11983/CBB23038
[23] 谢云灿, 何孝磊, 杜鹏, 等. 外源油菜素内酯对高温胁迫下大豆光合特性及产量品质的影响. 大豆科学, 2017, 36(2):237-243.
[24] 陈燕华, 王亚梁, 陈惠哲, 等. 油菜素甾醇类化合物对水稻抗逆的作用及其机制研究进展. 作物研究, 2020, 34(6):597-604.
[25] Mahmood T, Khalid S, Abdullah M, et al. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 2019, 9(1):105.
[26] Dalal V K, Tripathy B C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environment, 2012, 35(9):1685-1703.
[27] Cao X N, Hu Y L, Song J, et al. Transcriptome sequencing and metabolome analysis reveals the molecular mechanism of drought stress in millet. International Journal of Molecular Sciences, 2022, 23(18):10972.
[28] 任传友, 姜卓群, 苏小旋, 等. 水分胁迫/复水对谷子光合特性及产量影响. 应用气象学报, 2021, 32(4):456-467.
[29] 肖瑞雪, 郭丽丽, 贾琦石, 等. 油菜素内酯调控植物生长发育及产量品质研究进展. 江苏农业科学, 2019, 47(10):16-21.
[30] 魏鑫, 倪虹, 张会慧, 等. 外源脱落酸和油菜素内酯对干旱胁迫下大豆幼苗抗旱性的影响. 中国油料作物学报, 2016, 38 (5):605-610.
doi: 10.7505/j.issn.1007-9084.2016.05.010
[31] Gruszka D, Janeczko A, Dziurka M, et al. Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Frontiers in Plant Science, 2016, 7:1824.
pmid: 27994612
[32] 王福祥, 肖开转, 姜身飞, 等. 干旱胁迫下植物体内活性氧的作用机制. 科学通报, 2019, 64(17):1765-1779.
[33] 郑清岭, 杨忠仁, 张凤兰, 等. 沙芥属植物活性氧清除系统对干旱胁迫的响应. 西北植物学报, 2018, 38(9):1674-1682.
[34] 陈敏菊, 孟彦, 孟宪政. 干旱胁迫对甜高粱幼苗光合色素、保护酶活性及活性氧代谢的影响. 天津农业科学, 2021, 27(9):1-4.
[35] 阮英慧, 董守坤, 刘丽君, 等. 干旱胁迫下油菜素内酯对大豆花期生理特性的影响. 作物杂志, 2011(6):33-37.
[36] Perez-Borroto L S, Guzzo M C, Posada G, et al. A brassinosteroid functional analogue increases soybean drought resilience. Scientific Reports, 2022, 12(1):11294.
doi: 10.1038/s41598-022-15284-6 pmid: 35788151
[37] 曹亮, 杜昕, 于高波, 等. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析. 作物学报, 2021, 47(9):1779-1790.
doi: 10.3724/SP.J.1006.2021.04151
[38] Zhao C F, Guo H X, Wang J R, et al. Melatonin enhances drought tolerance by regulating leaf stomatal behavior, carbon and nitrogen metabolism, and related gene expression in maize plants. Frontiers in Plant Science, 2021, 12:779382.
[39] 于肖, 牛佳红, 陈二影, 等. 施氮与不同时期水分胁迫对谷子生长及生理生化特性的影响. 山东农业科学, 2022, 54(1):61-67.
[40] 李彩凤, 刘丹, 邹春雷, 等. 盐碱胁迫下喷施BR对甜菜光系统Ⅱ和氮代谢关键酶的影响. 东北农业大学学报, 2018, 49(8):39-47.
[41] 马月花, 郭世荣, 杜南山, 等. 外源24-表油菜素内酯对低氧胁迫下黄瓜幼苗氮代谢的影响. 南京农业大学学报, 2015, 38(4):538-545.
[1] 袁帅, 何明娟, 崔璨, 韩羽, 喻鹏, 易镇邪. 早稻基施不同用量钙镁水滑石对湘南双季稻产量和稻米品质影响[J]. 作物杂志, 2024, (4): 113–120
[2] 王文霞, 畅博凯, 夏清, 智慧, 杜杰. 叶面喷硒对胡麻生理特性、产量及品质的影响[J]. 作物杂志, 2024, (4): 130–137
[3] 袁迪, 智慧, 王海岗, 张慧, 姚琦, 梁红凯, 王君杰, 陈凌, 刁现民, 贾冠清. 我国谷子登记品种遗传多样性分析及综合评价[J]. 作物杂志, 2024, (4): 14–23
[4] 曹莉, 杨建辉, 张丽, 任伟, 曹正鹏, 马芳, 关永. 不同纳米硒肥叶面喷施对西兰花产量、品质及硒含量的影响[J]. 作物杂志, 2024, (4): 152–157
[5] 张丽娟, 秦宇坤, 陈俊英. 油棉两季秸秆还田下施氮量对棉花产量形成及氮肥利用效率的影响[J]. 作物杂志, 2024, (4): 158–163
[6] 任梁, 房孟颖, 武志海, 董学瑞, 卢霖, 闫鹏, 董志强. 乙矮合剂对酿造高粱抗倒伏能力及产量的影响[J]. 作物杂志, 2024, (4): 164–171
[7] 周舟, 沈炘垭, 王俊, 刘立军. 控释肥与普通尿素组合对水稻产量、氮肥利用率和米质的影响[J]. 作物杂志, 2024, (4): 180–187
[8] 吕博, 丁亮, 过聪, 陈锋, 周海平, 汪雪松, 董小林, 向发云. 复合微生物肥对棉田土壤养分及根际细菌群落的影响[J]. 作物杂志, 2024, (4): 209–215
[9] 李春花, 吴晗, 加央多拉, 王春龙, 王艳青, 任长忠. 播期对甜荞品种(系)农艺性状及产量的影响[J]. 作物杂志, 2024, (4): 216–222
[10] 王若鹏, 吕伟, 刘文萍, 文飞, 韩俊梅, 刘霞霞. 不同栽培模式对芝麻产量及土壤水热状况的影响[J]. 作物杂志, 2024, (4): 247–252
[11] 解慧芳, 魏萌涵, 宋中强, 刘金荣, 王素英, 邢璐, 王淑君, 刘海萍, 贾小平, 宋慧. 谷子主要性状主基因多基因混合遗传模型分析[J]. 作物杂志, 2024, (4): 82–89
[12] 郭海斌, 张军刚, 王文文, 薛志伟, 许海涛, 冯晓曦, 王斌功, 王成业. 夏玉米光合特性、根系生长和产量对砂姜黑土深松增密的响应[J]. 作物杂志, 2024, (3): 109–118
[13] 刘跃, 贾永红, 于月华, 张金汕, 王润琪, 李丹丹, 石书兵. 北疆氮肥运筹对花生生长发育、产量及品质的影响[J]. 作物杂志, 2024, (3): 119–126
[14] 张素瑜, 岳俊芹, 李向东, 靳海洋, 任德超, 杨明达, 邵运辉, 王汉芳, 方保停, 张德奇, 时艳华, 秦峰, 程红建. 施氮对郑麦366光合速率、花后干物质积累及产量的影响[J]. 作物杂志, 2024, (3): 127–132
[15] 宋慧, 王涛, 邢璐, 刘俊芳, 张扬, 刘金荣, 陈红旗, 冯佰利. 不同谷子品种喷施咪唑啉酮除草剂后的转录组分析[J]. 作物杂志, 2024, (3): 13–22
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!