Crops ›› 2017, Vol. 33 ›› Issue (5): 31-37.doi: 10.16035/j.issn.1001-7283.2017.05.006

Previous Articles     Next Articles

Comparative Analysis of Trait Correlation between Conventional Varieties (Lines) and Hybrids of Cotton

Luo Haihua1,2,Shao Deyi1,Chen Gong1,Xu Xiumin1,Gao Xin1,Yuan Changkai1,Peng Jinjian1,Tang Feiyu1   

  1. 1College of Agronomy,Jiangxi Agricultural University/Key Laboratory of Crop Physiology,Ecology and Genetic Breeding,Ministry of Education/Key Laboratory of Crop Physiology,Ecology and Genetic Breeding of Jiangxi Province,Nanchang 30045,Jiangxi,China
    2Jiangxi Cotton Research Institute,Jiujiang 332105,Jiangxi,China
  • Received:2017-05-08 Revised:2017-08-16 Online:2017-10-15 Published:2018-08-26
  • Contact: Feiyu Tang

Abstract:

Twenty four cotton (Gossypium hirsutum L.) conventional varieties (lines) and seven crosses were divided into three types (high, medium, low) based on lint yield per hectare using clustering methodology. The results showed that all crosses belonged to the high and medium types, and the low type was only comprised of conventional varieties. Twelve economically important characteristics of the three types were separated using ANOVA procedure and the Duncan’s multiple range test. No. of boll per plant, No. of fruit branch, single boll weight, plant height and lint percentage high types were significantly higher than low types. The relationship among the 12 Characteristics were investigated using pearson correlation analysis, partial correlation analysis and path analysis. It was found that boll per plants was the largest contributor to lint yield for conventional cotton, followed by lint percentage and single boll weight, but lint percentage for hybrid cotton. Seed index was negatively correlated with lint yield per hectare in both conventional and hybrid cotton. Lint yield was negatively correlated to fiber length and strength, but positive correlated with micronaire in conventional cotton, indicating it was difficult to improve simultaneously lint yield and fiber quality properties. Lint yield was positively correlated to fiber strength, and exhibited little association with fiber length and micronaire in hybrid cotton, suggesting the negative correlation between lint yield and fiber quality could be broken up to some extent by heterosis utilization.

Key words: Upland cotton, Conventional variety (lines), Hybrid cotton, Cluster analysis, Correlation analysis

Fig.1

Cluster dedrogram of the 31 upland cotton varieties (lines) and crosses"

Table 1

Performance of yield, yield components and agronomic traits in high, medium and low yield types"

产量类型LYT 皮棉产量LY (kg/hm2) 株高PH (cm) 果枝数NFB (台) 株铃数TBN (个) 单铃重SBW (g) 衣分GO (%) 子指SI (g)
高High 1 178.22a 98.25a 15.15a 32.95a 4.37a 44.79a 10.46b
中Medium 747.40b 85.97a 13.36b 26.91b 3.93b 41.52b 11.33a
低Low 421.60c 73.99b 10.44c 18.94c 3.74b 38.24c 12.21a

Table 2

Performance of fiber quality traits in high, medium and low yield types"

产量类型LYT 纤维上半部平均长度Len (mm) 整齐度Uni (%) 断裂比强度Str (cN/tex) 马克隆值Mic 伸长率El (%)
高High 29.30b 85.35a 29.78b 5.30ab 6.90a
中Medium 29.24b 84.53a 30.46b 5.44a 6.92a
低Low 31.39a 84.77a 32.76a 5.20b 6.97a

Table 3

Test results of normality"

Kolmogorov-Smirnov Shapiro-Wilk
统计量
Statistic
df Sig. 统计量
Statistic
df Sig.
皮棉产量Lint yield 0.077 31 0.200* 0.967 31 0.432

Table 4

Simple correlation coefficients among the 12 main characters in cotton conventional varieties (lines) and hybrids"

性状
Character
皮棉产量
LY
株高
PH
果枝数
NFB
株铃数
TBN
单铃重
SBW
衣分
GO
子指
SI
纤维上半部平均长度
Len
整齐度
Uni
断裂比强度
Str
马克隆值
Mic
伸长率
El
皮棉产量 0.451 -0.097 -0.153 0.423 0.612** -0.653** -0.017 0.126 0.474* 0.033 0.330
株高 0.583** 0.415 0.244 0.047 0.322 -0.569* -0.348 0.136 -0.049 -0.220 -0.138
果枝数 0.913** 0.569** 0.724** -0.083 -0.398 0.142 -0.236 -0.019 0.192 0.083 -0.374
株铃数 0.930** 0.639** 0.835** -0.279 -0.578** 0.229 -0.376 -0.130 0.169 0.171 -0.615**
单铃重 0.442* 0.242 0.403 0.532** 0.291 -0.277 0.261 -0.055 0.177 0.109 0.495*
衣分 0.742** 0.553** 0.808** 0.667** 0.320 -0.699** 0.321 0.351 0.228 -0.299 0.659**
子指 -0.754** -0.623** -0.651** -0.788** -0.492* -0.672** 0.073 -0.132 -0.085 0.329 -0.268
纤维上半部平均长度 -0.706** -0.485* -0.728** -0.601** -0.337 -0.801** 0.600** 0.468* 0.363 -0.088 0.682**
整齐度 -0.092 -0.099 -0.129 -0.024 -0.196 -0.210 0.037 0.320 0.358 -0.286 0.126
断裂比强度Str -0.714** -0.622** -0.678** -0.707** -0.258 -0.677** 0.653** 0.753** 0.218 0.072 0.310
马克隆值 0.632** 0.305 0.519** 0.700** 0.486* 0.495* -0.643** -0.665** -0.186 -0.519** 0.106
伸长率 -0.124 -0.071 -0.118 -0.088 -0.144 -0.400 0.174 0.499* 0.615** 0.412* -0.212

Table 5

Partial correlation coefficients among 12 main characters in cotton conventional varieties (lines) and hybrids"

性状
Character
株高
PH
果枝数
NFB
株铃数
TBN
单铃重
SBW
衣分
GO
子指
SI
纤维上半部平均长度
Len
整齐度
Uni
断裂比强度
Str
马克隆值
Mic
伸长率
El
皮棉产量
LY
株高 0.585 0.342 -0.106 0.190 -0.120 -0.276 0.364 -0.607 -0.234 0.197 0.482
果枝数 -0.234 0.258 0.184 -0.222 0.074 -0.013 -0.046 0.368 0.008 0.058 -0.312
株铃数 0.570* 0.342 -0.060 -0.097 -0.179 0.271 -0.344 0.503 0.349 -0.458 -0.255
单铃重 -0.232 0.018 0.409 -0.272 -0.106 0.028 0.017 -0.193 -0.108 0.289 0.388
衣分 0.103 0.461 -0.013 -0.125 -0.286 -0.249 0.362 -0.019 -0.367 0.578 0.259
子指 -0.329 0.167 0.106 -0.293 -0.320 0.138 -0.003 0.158 0.287 -0.083 -0.280
纤维上半部平均长度 -0.446 -0.392 0.701** -0.241 -0.214 -0.199 0.648* -0.127 -0.429 0.718* 0.069
整齐度 -0.434 -0.324 0.472 -0.284 0.136 -0.220 -0.356 0.448 0.282 -0.615 -0.297
断裂比强度 -0.050 0.047 -0.366 0.313 0.160 0.176 0.431 0.080 -0.313 0.388 0.713*
马克隆值 -0.563* -0.418 0.728** -0.162 -0.059 -0.292 -0.760** -0.446 0.269 0.602 0.444
伸长率 0.460 0.478 -0.390 0.058 -0.332 0.078 0.476 0.655** 0.140 0.430 -0.342
皮棉产量 -0.388 0.252 0.703** -0.301 -0.100 -0.284 -0.445 -0.276 0.151 -0.375 0.239

Table 6

Derict and in derict path coefficients between 11 characters and lint yield in per hectare in cotton conventional varieties (lines)"

性状
Character
简单相关
系数
SCC
直接通径
系数
DPC
间接通径系数TIPC
株高
PH
果枝数
NFB
株铃数
TBN
单铃重
SBW
衣分
GO
子指
SI
纤维上半部
平均长度Len
整齐度
Uni
断裂比强度
Str
马克隆值
Mic
伸长率
El
株高 0.583** -0.164 0.116 0.545 -0.023 -0.030 0.082 0.166 0.010 -0.044 -0.066 -0.008
果枝数 0.913** 0.203 -0.093 0.712 -0.039 -0.043 0.085 0.249 0.013 -0.049 -0.113 -0.013
株铃数 0.930** 0.852 -0.104 0.170 -0.051 -0.036 0.103 0.205 0.002 -0.051 -0.153 -0.009
单铃重 0.442* -0.096 -0.040 0.082 0.454 -0.017 0.065 0.115 0.019 -0.018 -0.106 -0.015
衣分 0.742** -0.053 -0.090 0.164 0.569 -0.031 0.088 0.273 0.021 -0.048 -0.108 -0.043
子指 -0.754** -0.131 0.102 -0.132 -0.672 0.047 0.036 -0.205 -0.004 0.047 0.140 0.019
纤维上半部平均长度 -0.706** -0.341 0.079 -0.148 -0.512 0.032 0.043 -0.079 -0.032 0.054 0.145 0.053
整齐度 -0.092 -0.099 0.016 -0.026 -0.020 0.019 0.011 -0.005 -0.109 0.016 0.041 0.065
断裂比强度 -0.714** 0.072 0.102 -0.138 -0.603 0.025 0.036 -0.086 -0.257 -0.021 0.113 0.044
马克隆值 0.632** -0.218 -0.050 0.105 0.597 -0.046 -0.026 0.084 0.227 0.018 -0.037 -0.022
伸长率 -0.124 0.106 0.012 -0.024 -0.075 0.014 0.021 -0.023 -0.170 -0.061 0.029 0.046

Table 7

Derict and in derict path coefficients between 11 characters and lint yield in per hectare in cotton crosses"

性状
Character
简单相关
系数
SCC
直接通径
系数
DPC
间接通径系数TIPC
株高
PH
果枝数
NFB
株铃数
TBN
单铃重
SBW
衣分
GO
子指
SI
纤维上半部
平均长度Len
整齐度
Uni
断裂比
强度Str
马克隆值
Mic
伸长率
El
株高 0.451 0.459 -0.104 -0.058 0.010 0.100 0.126 -0.023 -0.029 -0.031 -0.062 0.064
果枝数 -0.097 -0.249 0.191 -0.172 -0.018 -0.124 -0.031 -0.016 0.004 0.122 0.024 0.174
株铃数 -0.153 -0.238 0.112 -0.181 -0.061 -0.180 -0.050 -0.025 0.028 0.107 0.049 0.285
单铃重 0.423 0.220 0.022 0.021 0.066 0.090 0.061 0.017 0.012 0.112 0.031 -0.230
衣分 0.612** 0.311 0.148 0.099 0.137 0.064 0.154 0.021 -0.076 0.144 -0.085 -0.306
子指 -0.653** -0.221 -0.261 -0.035 -0.054 -0.061 -0.217 0.005 0.028 -0.054 0.093 0.124
纤维上半部平均长度 -0.017 0.066 -0.160 0.059 0.089 0.058 0.100 -0.016 -0.101 0.230 -0.025 -0.316
整齐度 0.126 -0.216 0.062 0.005 0.031 -0.012 0.109 0.029 0.031 0.227 -0.081 -0.058
断裂比强度 0.474* 0.633 -0.023 -0.048 -0.040 0.039 0.071 0.019 0.024 -0.077 0.020 -0.144
马克隆值 0.033 0.284 -0.101 -0.021 -0.041 0.024 -0.093 -0.073 -0.006 0.062 0.045 -0.049
伸长率 0.330 -0.464 -0.063 0.093 0.146 0.109 0.205 0.059 0.045 -0.027 0.196 0.030
[1] 朱华玉 . 利用棉纤维发育相关基因研究不同棉种的起源与进化. 南京:南京农业大学, 2010.
[2] 陈旭升, 钱大顺, 狄佳春 , 等. 影响抗虫杂交棉皮棉产量性状分析. 中国棉花, 2000,27(8):16-17.
[3] 何团结 . 抗虫杂交棉农艺性状相关性分析. 安徽农业科学, 2003,31(6):929-930,943.
[4] 田守芳, 徐恒玉, 雷晓天 . 杂交抗虫棉主要性状对产量形成的影响.中国棉花, 2005(8):16-17.
[5] Zeng L, Wu J . Germplasm for genetic improvement of lint yield in upland cotton:genetic analysis of lint yield with yield components. Euphytica, 2012,187:247-261.
doi: 10.1007/s10681-012-0708-y
[6] 崔秀珍, 李哲 . Bt基因抗虫棉主要经济性状相关性及对产量的效应分析.辽宁农业科学, 2006(1):7-9.
[7] 王巧玲, 李哲, 张秀枝 . 陆地棉主要产量与品质性状的相关分析. 河南农业科学, 1999(10):12-13.
[8] ]李煦远, 吴红星, 董彩虹 . 陆地棉品种间杂种F2代优势研究及经济农艺性状的通径分析. 棉花学报, 1996,8(3):131-137.
[9] 李定国, 张文英, 赵志华 . 陆地棉杂种F1代主要经济性状的通径分析. 安徽农业科学, 2005,33(2):194-195,197.
[10] 汤飞宇, 程锦, 黄文新 , 等. 纺高支纱陆地棉主要经济性状间相关性分析.江西农业大学学报, 2006(4):502-505.
[11] 汤飞宇, 程锦, 黄文新 , 等. 高品质陆地棉复交品系主要经济性状变异与相关分析.作物杂志, 2008(5):47-49.
doi: 10.3969/j.issn.1001-7283.2008.05.013
[12] 汤飞宇, 程锦, 黄文新 , 等. 中长绒陆地棉主要产量与品质性状的灰色关联分析.作物杂志, 2006(6):37-38.
doi: 10.3969/j.issn.1001-7283.2006.06.013
[13] 汤飞宇, 程锦, 黄文新 , 等. 高品质陆地棉数量性状的典型相关研究. 安徽农业科学, 2008,6(16):6725-6726.
[14] 汤飞宇, 程锦, 黄文新 , 等. 高品质棉与不同类型品种杂种的遗传及优势分析. 棉花学报, 2008,20(3):170-173.
doi: 1002-7807(2008)03-0170-04
[15] 徐敏, 胡玉枢, 李憬霖 , 等. 早熟棉创新种质资源主要性状聚类及相关分析.作物杂志, 2017(1):25-31.
doi: 10.16035/j.issn.1001-7283.2017.01.005
[16] 张震, 宋云丽, 余行简 , 等. 抗虫杂交棉产量因子分析.中国种业, 2003(10):46-47.
[17] 曹雯梅, 刘松涛, 王汉民 . 常规棉与杂交棉产量构成因素的偏相关和通径分析.作物杂志, 2006(5):23-24.
[18] Bechere E, Zeng L, Boykin D . Correlation and path-coefficient analyses of lint yield and other traits in upland cotton (Gossypium hirsutum L.). Journal of Crop Improvement, 2014,28(6):852-870.
doi: 10.1080/15427528.2014.955621
[19] Worley S, Culp T W, Harrell D C . The relative contributions of yield components to lint yield of upland cotton,Gossypium hirsutum L. Euphytica, 1974,23:399-403.
doi: 10.1007/BF00035885
[20] Tang F Y, Fu X Q, Mo W C , et al. Performance of yield components and morphological traits and their relationships of the lint yield in Bt cotton (Gossypium hirsutum) hybrids. International Journal of Agriculture & Biology, 2012,14(3):360-364.
[21] 曹新川, 熊仁次, 何良荣 , 等. 陆地棉品种数量性状的典型相关研究. 中国棉花, 2003,30(2):11-13.
doi: 10.3969/j.issn.1000-632X.2003.02.004
[22] 郑巨云, 王俊铎, 艾先涛 , 等. 陆地棉产量与纤维品质性状的遗传相关分析.新疆农业科学, 2013(6):995-1002.
doi: 10.6048/j.issn.1001-4330.2013.06.003
[23] 宋小园, 朱仲元, 刘艳伟 , 等. 通径分析在SPSS逐步线性回归中的实现.干旱区研究, 2016(1):108-113.
[24] 杜家菊, 陈志伟 . 使用SPSS线性回归实现通径分析的方法.生物学通报, 2010(2):4-6.
[25] Rauf S, Khan T M, Sadaqat H A , et al. Correlation and path coefficient analysis of yield components in cotton (Gossypium hirsutum L.). International Journal of Agriculture & Biology, 2004,6:686-688.
[1] Wu Ruixiang, Yang Jianchun, Wang Liqin, Guo Xiujuan. Evaluation of the Adaptability of Flax Drought#br# Resistance Based on Multiple Statistics Analysis [J]. Crops, 2018, 34(5): 10-16.
[2] Chen Guangzhou, Wang Guangfu, Qu Jianzhou, Si Leiyong, . Study on Grain Dehydration Rate and#br# Correlation Analysis of Major Related#br# Characters in Different Maize Inbred Lines [J]. Crops, 2018, 34(5): 33-39.
[3] Wang Lei, Zhang Xiangping, Li Runxi, Niu Xiaoxia, . Multivariate Analysis and Evaluation on Agronomic#br# Traits and Grain Amylopectin Content of Barley [J]. Crops, 2018, 34(5): 71-76.
[4] Zhang Yizhong, Zhou Fuping, Zhang Xiaojuan, . Identification and Cluster Analysis of Photosynthetic#br# Characters and WUE in Sorghum Germplasm [J]. Crops, 2018, 34(5): 45-53.
[5] Wu Ronghua, Zhuang Kezhang, Liu Peng, Zhang Chunyan. Response of Summer Maize Yield to#br# Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[6] Bin Zhang,Jinxiu Li,Zhen Wang,Hao Feng,Jinbang Li. Correlation and Cluster Analysis of Agronomic Traits in Wheat Lines [J]. Crops, 2018, 34(3): 57-60.
[7] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines) [J]. Crops, 2018, 34(1): 77-82.
[8] Huyi He,Guanning Tan,Xinmin He,Xin Yang,Zhouping Tang,Lishu Li. The Relationship and Cluster Analysis on Polysaccharides and Cellulose of Different Varieties of Dendrobium officinale [J]. Crops, 2017, 33(2): 29-33.
[9] Haitao Cheng,Zhaohui Ma,Guilin Liu,Ping Cao,Wenyan Lü. Canonical Correlation Analysis between RVA Profile Characteristics and Quality Traits of Japonica Rice Varieties [J]. Crops, 2017, 33(2): 59-66.
[10] Min Xu,Yushu Hu,Jinglin Li,Lulu Jin,Zisheng Wang. Clustering and Correlation Analysis of Earlier-Mauture Cotton Innovation Germplasm based on Biological Characters [J]. Crops, 2017, 33(1): 25-31.
[11] Xiaoli Gao,Wenhua Liao,Shanshan Wang,Wencai Yang,Xianglin Dai,Yuhong Zhang. Relationships among Major Agronomic Traits and Nutritional Characters of Pea based on Correlation/Grey Relational Analysis [J]. Crops, 2016, 32(5): 56-60.
[12] Zhen Qi,Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yushuang Yang,Mei Wang,Zhongqing Fan,Mingming Guo,Yu Wang,Tong Sun,Xiaocheng Liu. Correlation and Path Analysis on Wheat Yield and Agronomic Indices [J]. Crops, 2016, 32(3): 45-50.
[13] Xiaocong Zhang,Yu Zhou,Lin Zhang,Hong Di,Jianfeng Weng,Xinhai Li,Zhenhua Wang. Identification of Cold Tolerance at Germination Stage in Maize Inbred Lines [J]. Crops, 2016, 32(2): 21-26.
[14] Liang Wang,Guang Feng,Yanyan Li,Xiqiang Jing,Changling Huang. Relationship between Maize Lodging Resistance and Agronomic Traits,Plant Diseases,and Insect Pests [J]. Crops, 2016, 32(2): 83-88.
[15] Li Zhao,Limin Wang,Wei Zhao,Zhao Dang,Jianping Zhang,Zhanhai Dang. The Isolation of Crude Fat and Fatty Acid Components in a RIL Population of Oil Flax and Their Correlation Analysis [J]. Crops, 2016, 32(1): 33-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .