Crops ›› 2018, Vol. 34 ›› Issue (4): 20-27.doi: 10.16035/j.issn.1001-7283.2018.04.004
Previous Articles Next Articles
Bai Wenlian1,Zheng Yi1,2,Xiao Jingxiu1
[1] |
Shen J, Yuan L, Zhang J , et al. Phosphorus dynamics:from soil to plant. Plant Physiology, 2011,156(3):997-1005.
doi: 10.1104/pp.111.175232 |
[2] | Raghothama K G, Kartikeyan A S . Phosphate acquisition. Plant & Soil, 2005,274(1-2):37-49. |
[3] | 李隆 . 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016,24(4):403-415. |
[4] |
苏本营, 陈圣宾, 李永庚 , 等. 间套作种植提升农田生态系统服务功能. 生态学报, 2013,33(14):4505-4514.
doi: 10.5846/stxb201204200574 |
[5] |
Machado S . Does intercropping have a role in modern agriculture? Journal of Soil and Water Conservation, 2009,64(2):55A-57A.
doi: 10.2489/jswc.64.2.55A |
[6] | Buhk C, Alt M, Steinbauer M J , et al. Homogenizing and diversifying effects of intensive agricultural land-use on plant species beta diversity in Central Europe-A call to adapt our conservation measures. Science of the Total Environment, 2016,576 : 225-233. |
[7] | 杨亚东, 冯晓敏, 胡跃高 , 等. 豆科作物间作燕麦对土壤固氮微生物丰度和群落结构的影响. 应用生态学报, 2017,28(3):957-965. |
[8] | 冯晓敏, 杨永, 任长忠 , 等. 燕麦/大豆和燕麦/花生间作对根际土壤固氮细菌多样性与群落结构的影响. 中国农业大学学报, 2016,21(1):22-32. |
[9] |
张德闪, 王宇蕴, 汤利 , 等. 小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系. 植物营养与肥料学报, 2013,19(1):127-133.
doi: 10.11674/zwyf.2013.0115 |
[10] |
王宇蕴, 任家兵, 郑毅 , 等. 间作小麦根际和土体磷养分的动态变化. 云南农业大学学报, 2011,26(6):851-855.
doi: 10.3969/j.issn.1004-390X(n).2011.06.021 |
[11] | 刘均霞, 陆引罡, 远红伟 , 等. 玉米/大豆间作条件下养分的高效利用机理. 山地农业生物学报, 2007,26(2):105-109. |
[12] |
Wang X, Deng X, Pu T , et al. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 2017,204:12-22.
doi: 10.1016/j.fcr.2016.12.020 |
[13] | 代会会, 胡雪峰, 曹明阳 , 等. 豆科间作对番茄产量、土壤养分及酶活性的影响. 土壤学报, 2015,52(4):911-918. |
[14] | 唐秀梅, 钟瑞春, 蒋菁 , 等. 木薯/花生间作对根际土壤微生态的影响. 基因组学与应用生物学, 2015,34(1):117-124. |
[15] |
Bagci E G . Interspecific facilitative root interactions and rhizosphere effects on phosphorus and iron nutrition between mixed grown chickpea and barley. Journal of Plant Nutrition, 2007,30(9):1455-1469.
doi: 10.1080/01904160701555648 |
[16] |
Xia H Y, Zhao J H, Sun J H , et al. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 2013,150(15):52-62.
doi: 10.1016/j.fcr.2013.05.027 |
[17] | 李隆 . 间作作物种间促进与竞争使用研究. 北京:中国农业大学, 1999. |
[18] |
李淑敏 . 间作作物吸收磷的种间促进作用机制研究. 北京:中国农业大学, 2004.
doi: 10.7666/d.y658991 |
[19] |
Li C, Dong Y, Li H , et al. Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted. Scientific Reports, 2016,6:18663.
doi: 10.1038/srep18663 |
[20] |
Li L, Li S M, Sun J H , et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(27):11192.
doi: 10.1073/pnas.0704591104 |
[21] |
Li L, Zhang F, Li X , et al. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutrient Cycling in Agroecosystems, 2003,65(1):61-71.
doi: 10.1023/A:1021885032241 |
[22] |
李隆, 李晓林, 张福锁 . 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. 植物营养与肥料学报, 2000,6(2):140-146.
doi: 10.11674/zwyf.2000.0203 |
[23] | Hauggard-Nielsen H, Ambus P, Jensen E S . Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops-a field study employing 32P technique . Plant & Soil, 2001,236(1):63-74. |
[24] |
李萍, 刘玉皎 . 高海拔地区蚕豆/马铃薯根系时空分布特征及根系活性研究. 宁夏大学学报(自然科学版), 2013,34(4):338-343.
doi: 10.3969/j.issn.0253-2328.2013.04.012 |
[25] |
Li L, Tilman D, Lambers H , et al. Plant diversity and overyielding:insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014,203(1):63.
doi: 10.1111/nph.12778 |
[26] |
Li L, Sun J, Zhang F , et al. Root distribution and interactions between intercropped species. Oecologia, 2006,147(2):280-290.
doi: 10.1007/s00442-005-0256-4 pmid: 16211394 |
[27] | 左元梅, 王贺, 李晓林 , 等. 石灰性土壤上玉米/花生间作对花生根系形态变化和生理反应的影响. 作物学报, 1998,24(5):558-563. |
[28] |
孙海国, 张福锁, 杨军芳 . 不同供磷水平小麦苗期根系特征与其相对产量的关系. 华北农学报, 2001,16(3):98-104.
doi: 10.3321/j.issn:1000-7091.2001.03.019 |
[29] | 张恩和, 黄高宝, 黄鹏 . 不同供磷水平下粮豆间套种植对根系分布和根际效应的影响. 草业学报, 1999(3):35-38. |
[30] |
陈杨 . 种间相互作用对大豆、蚕豆和小麦根系形态的影响. 北京:中国农业大学, 2005.
doi: 10.7666/d.y773957 |
[31] |
Li S M, Li L, Zhang F S , et al. Acid phosphatase role in chickpea/maize intercropping. Annals of Botany, 2004,94(2):297.
doi: 10.1093/aob/mch140 pmid: 15238349 |
[32] |
李秋祝, 余常兵, 胡汉升 , 等. 不同竞争强度间作体系氮素利用和土壤剖面无机氮分布差异. 植物营养与肥料学报, 2010,16(4):777-785.
doi: 10.11674/zwyf.2010.0401 |
[33] |
Adnane B, Noyce G L, Carlsson G , et al. Species interactions enhance root allocation,microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Applied Soil Ecology, 2017,120(C):179-188.
doi: 10.1016/j.apsoil.2017.08.011 |
[34] |
Neumann G, Romheld V . Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant & Soil, 1999,211(1):121-130.
doi: 10.1023/A:1004380832118 |
[35] |
Li L, Tang C, Rengel Z , et al. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source. Plant & Soil, 2003,248(1-2):297-303.
doi: 10.1023/A:1022389707051 |
[36] |
Lefebvre D D, Duff S M G, Fife C A ,et al. Response to phosphate deprivation in Brassica nigra suspension cells enhancement of intracellular,cell surface and secreted phosphatase activities compared to increases in Pi-absorption rate. Plant Physiology, 1990,93(2):504-511.
doi: 10.1104/pp.93.2.504 |
[37] |
Inal A, Gunes A, Zhang F , et al. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology & Biochemistry, 2007,45(5):350-356.
doi: 10.1016/j.plaphy.2007.03.016 pmid: 17467283 |
[38] |
潘相文, 唐才贤, 王光华 , 等. 作物耐低磷适应机制研究进展. 吉林农业大学学报, 2005,27(4):434-441.
doi: 10.3969/j.issn.1000-5684.2005.04.020 |
[39] |
Jones D L . Organic acids in the rhizosphere-a critical review. Plant & Soil, 1998,205(1):25-44.
doi: 10.1023/A:1004356007312 |
[40] |
Hinsinger P, Betencourt E, Bernard L , et al. P for two,sharing a scarce resource:soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology, 2011,156:1078-1086.
doi: 10.1104/pp.111.175331 |
[41] |
Zhang D, Zhang C, Tang X , et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytologist, 2016,209(2):823-831.
doi: 10.1111/nph.13613 |
[42] |
Ae N, Arihara J, Okada K , et al. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science, 1990,248(4954):477-480.
doi: 10.1126/science.248.4954.477 pmid: 17815599 |
[43] | 肖靖秀, 郑毅, 汤利 , 等. 小麦-蚕豆间作对根系分泌低分子量有机酸的影响. 应用生态学报, 2014,25(6):1739-1744. |
[44] |
雍太文, 陈小容, 杨文钰 , 等. 小麦/玉米/大豆三熟套作体系中小麦根系分泌特性及氮素吸收研究. 作物学报, 2010,36(3):477-485.
doi: 10.3724/SP.J.1006.2010.00477 |
[45] | 李淑敏, 李隆, 张福锁 . 蚕豆/玉米间作接种AM真菌与根瘤菌对其吸磷量的影响. 中国生态农业学报, 2005,13(3):136-139. |
[46] | Qiao X, Beis K, Li H G , et al. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant & Soil, 2016,406(1-2):1-13. |
[47] |
李淑敏, 李隆, 张福锁 . 丛枝菌根真菌和根瘤菌对蚕豆吸收磷和氮的促进作用. 中国农业大学学报, 2004,9(1):11-15.
doi: 10.3321/j.issn:1007-4333.2004.01.003 |
[48] | 董艳, 汤利, 郑毅 , 等. 施氮对间作蚕豆根际微生物区系和枯萎病发生的影响. 生态学报, 2010,30(7):1797-1805. |
[49] |
王硕, 张仕颖, 史静 , 等. 丛枝菌根真菌与间作对滇池流域红壤上大豆生长及磷累积的影响. 作物杂志, 2015(6):106-111.
doi: 10.16035/j.issn.1001-7283.2015.06.018 |
[50] |
张宇亭, 朱敏, 线岩相洼 , 等. 接种AM真菌对玉米和油菜种间竞争及土壤无机磷组分的影响. 生态学报, 2012,32(22):7091-7101.
doi: 10.5846/stxb201110251582 |
[51] |
Jalonen R, Timonen S, Sierra J , et al. Arbuscular mycorrhizal symbioses in a cut-and-carry forage production system of legume tree Gliricidia sepium and fodder grass Dichanthium aristatum. Agroforestry Systems, 2013,87(2):319-330.
doi: 10.1007/s10457-012-9553-1 |
[52] |
Gerretsen F C . The influence of microorganisms on the phosphate intake by the plant. Plant & Soil, 1948,1(1):51-81.
doi: 10.1007/BF02080606 |
[53] | 李淑高 . 解磷微生物的研究Ⅱ.施用Bacillus.74型解磷微生物对土壤和作物的影响. 山西农业大学学报(自然科学版), 1982,2(2):46-51. |
[54] |
Illmer P, Barbato A, Schinner F . Solubilization of hardly-soluble A1PO4 with P-solubilizing microorganisms. Soil Biology & Biochemistry, 1995,27(3) : 265-270.
doi: 10.1016/0038-0717(94)00205-F |
[55] | 洪坚平, 谢英荷, Neumann ,等. 两种微生物菌剂对小麦幼苗生长和磷吸收机理的影响研究. 中国生态农业学报, 2008,16(1):105-108. |
[56] | Kucey R M . Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Applied & Environmental Microbiology, 1987,53(12):2699-2703. |
[57] | Tang X, Placella S A, Dayde F , et al. Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient. Plant & Soil, 2016,407(1-2):1-16. |
[58] | Cheng L, Tang X, Vance C P , et al. Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). 2014,65(12):2995-3003. |
[59] |
Wu P, Ma L, Hou X , et al. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 2003,132(3):1260-1264.
doi: 10.1104/pp.103.021022 |
[60] |
Abel S, Ticconi C A, Delatorre C A . Phosphate sensing in higher plants. Physiologia Plantarum, 2002,115(1):1-8.
doi: 10.1034/j.1399-3054.2002.1150101.x pmid: 12010462 |
[61] | Coulis M, Bernard L, Gerard F , et al. Endogeic earthworms modify soil phosphorus,plant growth and interactions in a legume-cereal intercrop. Plant & Soil, 2014,379(1-2):149-160. |
[62] |
Santiago D C, ArieiraG D O, De Almeidal E , et al. Responses of soil nematode communities to agroecological crop management systems. Nematology, 2012,14(2):209-221.
doi: 10.1163/138855411X587103 |
|