Crops ›› 2018, Vol. 34 ›› Issue (5): 45-53.doi: 10.16035/j.issn.1001-7283.2018.05.008

Previous Articles     Next Articles

Identification and Cluster Analysis of Photosynthetic Characters and WUE in Sorghum Germplasm

Zhang Yizhong1,2,Zhou Fuping1,Zhang Xiaojuan1,Shao Qiang1,Yang Bin1,Liu Qingshan1   

  1. 1 Sorghum Institute, Shanxi Academy of Agricultural Sciences/Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Yuci 030600, Shanxi, China
    2 Agronomy College, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2018-03-28 Revised:2018-07-31 Online:2018-10-15 Published:2018-10-12
  • Contact: Qingshan Liu

Abstract:

101 sorghum germplasms were selected as test materials in this study. The photosynthetic parameters in leaves were determined by LI-6400 photosynthesis instrument under field conditions, and correlation analysis was carried out. Photosynthetic characters and water use efficiency (WUE) of different sorghum germplasm were evaluated by cluster and discrimination analysis. The results showed there were significant differences (P<0.01) in photosynthetic parameters (Pn, Tr, Gs, Ci) and water use efficiency (WUE) among the test germplasm, with Pn ranging from 12.04 to 49.32μmolCO2/(m 2?s). Correlation analysis indicated that the highly significant positive correlations were between Pn and Tr (r=0.745), Pn and Gs (r=0.654), Tr and Gs (r=0.771). The highly significant negative correlations were between Pn and Ci (r=-0.493), Tr and WUE (r=-0.400), Ci and WUE (r=-0.341). 101 sorghum germplasms were clustered into six groups based on Pn, Tr and WUE. The group A2 and C including 17 sorghum breeding materials with high photosynthesis rate and high water use efficiency could be utilized as high photosynthetic efficiency breeding parent or materials. Based on cluster analysis, that established eight discriminant models which were of high discriminative ability by discriminant analysis for three photosynthetic parameters (Pn, Tr and WUE).

Key words: Sorghum, Germplasm, Photosynthetic characters, Cluster analysis, Discriminant analysis

Table 1

The sorghum germplasm resources used in this study"

编号
No.
材料名称
Name
类型
Type
编号
No.
材料名称
Name
类型
Type
编号
No.
材料名称
Name
类型
Type
1 优0-30 R 35 L9137 R 69 01B B
2 R111 R 36 张辽父 R 70 29B B
3 J7645早 R 37 0-30 R 71 AGR1B B
4 0-30红粒变 R 38 晋粱5号 R 72 8808B B
5 R09305 R 39 晋辐1号 R 73 88021B B
6 3560R R 40 1383-2 R 74 0122B B
7 锦Y15 R 41 三尺三 R 75 泸45B B
8 LNR-4 R 42 4003 R 76 10337-1B B
9 L17 R 43 93943/157 R 77 7B大粒TB B
10 LR233 R 44 5-27 R 78 053005B B
11 吉R105 R 45 J3 R 79 Y60B B
12 铁10612 B 46 gd1697-2 R 80 LgB/R5M874B-Ⅰ B
13 R09279 R 47 ESB25B R 81 LgB/R5M874B-Ⅲ B
14 忻粱7号 R 48 邵R R 82 气死糜子/原8801B B
15 泸恢1 R 49 R09274 R 83 67B B
16 恢1变 R 50 R09277 R 84 T239B/2087B B
17 L2R R 51 R09304 R 85 黑3022B B
18 R07221 R 52 R09309 R 86 黑3035B B
19 657-1 R 53 R09313 R 87 黑3038B B
20 60R R 54 R072185 R 88 黑3016B B
21 大红粒 R 55 H02029 R 89 黑3110B B
22 R072194 R 56 H02073 R 90 吉2055B B
23 R072198 R 57 H02079 R 91 Y23B B
24 黑2001 R 58 锦R R 92 3765红B B
25 黑R R 59 叶上冲 R 93 3765白B B
26 741324 R 60 112020 R 94 L407B B
27 363C R 61 黑高粱 R 95 11480B B
28 忻粱52 R 62 非洲高粱-1 B 96 11486B B
29 L早615 R 63 非洲高粱-2 B 97 11494B B
30 南133 R 64 A2V4B B 98 11506B B
31 吉9 R 65 Tx623B B 99 72B/DORADO双 B
32 吉12 R 66 72B B 100 72B/054178双 B
33 吉13 R 67 8801B B 101 GB103 B
34 L22 R 68 18B B

Table 2

Variance analysis of photosynthetic characteristics and WUE of sorghum germplasm"

参数
Parameter
变异来源
Source of variance
自由度
df
平方和
Sum of square
均方
Mean square
F值
F value
平均值
Mean
标准差
SD
变异系数(%)
CV
变幅
Range
Pn 材料间Among materials 100 23 389.755 233.898 114.334** 32.10 8.83 27.51 12.04~49.32
[μmolCO2/(m2·s)] 误差Error 202 413.239 2.046
总和Total 302 23 802.993
Tr 材料间Among materials 100 995.289 9.953 72.133** 6.58 1.82 27.68 2.32~10.69
[mmolH2O/(m2·s)] 误差Error 202 27.872 0.138
总和Total 302 1 023.161
Gs 材料间Among materials 100 5.549 0.056 40.318** 0.34 0.14 39.28 0.08~0.73
[molH2O/(m2·s)] 误差Error 202 0.278 0.001
总和Total 302 5.827
Ci 材料间Among materials 100 846 411.254 8 464.113 32.472** 119.24 53.09 44.52 42.67~284.00
(μmolCO2/mol) 误差Error 202 52 652.667 260.657
总和Total 302 899 063.921
WUE 材料间Among materials 100 389.930 3.899 21.641** 5.00 1.23 22.56 1.95~7.95
(μmolCO2/mmolH2O) 误差Error 202 36.397 0.180
总和Total 302 426.327

Fig.1

Cluster analysis of sorghum germplasms based on the measured value of net photosynthesis rate"

Table 3

Cluster analysis of net photosynthetic rate of sorghum germplasms"

类群
Cluster
材料代号
Code of germplasm
个数
Number
频率(%)
Frequency
类平均Mean of cluster
[μmolCO2/(m2·s)]
变幅Range
[μmolCO2/(m2·s)]
50,55,70,81,86 5 4.95 47.74±1.03a 46.55~49.32
1,2,4,8,10,12,15,21,23,25,28,29,32,35,40,43,44,49,51,54,60,62,64,67,68,72,83,87,89,90,91,92,93,95,96,99,101 37
36.63
39.54±3.14b
34.68~44.61
6,7,13,16,18,19,22,30,31,33,37,38,41,42,46,47,48,52,56,58,59,61,63,65,71,73,74,75,76,82,85,88,94,97 34
33.66
30.37±2.35c
26.69~34.14
3,5,9,11,17,20,26,27,34,36,39,53,69,77,78,79,80,84,98,100 20 19.80 21.97±2.43d 17.29~25.92
14,24,45,57,66 5 4.95 13.60±1.21e 12.04~15.09

Table 4

Cluster analysis of water use efficiency of sorghum germplasm"

类群
Cluster
材料代号
Code of germplasm
个数
Number
频率(%)
Frequency
类平均Mean of cluster
(μmolCO2/mmolH2O)
变幅Range
(μmolCO2/mmolH2O)
7,12,13,17,84 5 4.95 7.77±0.13a 7.95~7.61
6,8,9,10,29,75,80,92,93 9 8.91 6.75±0.17b 7.00~6.51
2,4,15,16,18,23,25,32,46,58,72,74,82,95 14 13.86 5.76±0.29c 6.31~5.40


1,5,11,19,20,21,22,24,26,27,28,30,31,33,35,36,37,38,39,40,41,42,43,
44,45,47,48,49,50,51,52,54,55,56,59,60,61,62,63,64,65,66,67,68,70,
71,73,76,77,78,79,81,83,85,86,87,88,89,90,91,94,96,97,98,99,100,101
67

66.34

4.59±0.43d

5.32~3.73

3,14,34,53,69 5 4.95 3.04±0.21e 3.25~2.75
57 1 0.99 1.95f 1.95

Table 5

Correlation coefficients between photosynthetic characters and WUE"

性状Trait Pn Tr Gs Ci WUE
Pn 1.000
Tr 0.745** 1.000
Gs 0.654** 0.771** 1.000
Ci -0.493** -0.189 0.178 1.000
WUE 0.277** -0.400** -0.164 -0.341** 1.000

Table 6

Cluster analysis and discriminant results of sorghum germplasm materials Pn and WUE"

类群
Cluster
材料代号
Code of germplasm
个数
Number
频率(%)
Frequency
判别模型
Discrimination mode
类平均Mean of cluster
Pn
[μmolCO2/(m2·s)]
WUE
(μmolCO2/mmolH2O)
A1 43,50,51,55,60,70,81,86,89,90,91,101 12 11.88 Y=5.13Pn+27.43WUE-178.00 44.48±3.18a 4.65±0.23d
A2 2,23,25,32,40,72,95 7 6.93 Y=4.93Pn+32.82WUE-196.69 42.64±1.94a 5.58±0.28c
B1 1,21,28,31,35,44,49,54,56,59,62,64,67,68,83,87,96,99 18 17.82 Y=4.22Pn+27.89WUE-143.35 36.55±2.14b 4.74±0.41d
B2
4,16,19,22,26,30,33,38,41,42,46,47,48,61,63,65,71,73,74,
76,82,88,94
23
22.77
Y=3.50Pn+29.43WUE-126.66
30.20±2.47c
5.02±0.43d
C 3,5,11,20,27,36,37,39,52,53,69,77,78,79,85,97,98,100 18 17.82 Y=2.77Pn+23.03WUE-78.25 23.89±3.24d 3.93±0.52e
D 14,24,34,45,66 5 4.95 Y=1.70Pn+21.69WUE-52.57 14.56±2.78e 3.71±0.52e
E 57 1 0.99 Y=1.65Pn+11.46WUE-22.93 14.26e 1.95f
F 6,7,8,10,12,15,29,75,92,93 10 9.90 Y=4.38Pn+40.47WUE-222.45 37.77±3.77b 6.90±0.45b
G 9,18,58,80 4 3.96 Y=2.77Pn+37.32WUE-151.95 23.76±4.70d 6.38±0.32b
H 13,17,84 3 2.97 Y=2.64Pn+45.82WUE-209.44 22.52±4.71d 7.84±0.09a

Table 7

Cluster and discrimination for Pn, Tr and WUE in sorghum germplasm resources"

类群
Cluster
材料代号
Code of germplasm
个数
Number
频率(%)
Frequency
判别模型
Discrimination mode
类平均Mean of cluster
Pn
[μmolCO2/(m2·s)]
Tr
[mmolH2O/(m2·s)]
WUE
(μmolCO2/mmolH2O)
A1
43,50,51,55,60,70,81,86,89,90,91,101 12
11.88
Y=-22.97Pn+133.00Tr+165.55WUE-510.49
44.48±3.18a
9.57±0.64a
4.65±0.23d
A2 2,23,25,32,40,72,95 7 6.93 Y=-21.23Pn+122.17Tr+158.91WUE-458.87 42.64±1.94a 7.66±0.59b 5.58±0.28c
B1


1,4,21,28,31,35,37,41,42,44,47,48,49,52,54,56,59,61,62,64,67,68,71,79,83,85,87,88,94,96,97,99 32

31.68

Y=-23.1Pn+129.08Tr+163.27WUE-460.66

33.97±3.73c

7.38±0.72b

4.62±0.46d

B2
9,16,18,19,22,26,30,33,38,
46,58,63,65,73,74,76,82
17
16.83
Y=-23.32Pn+126.71Tr+166.16WUE-453.86
28.45±2.51d
5.32±0.69c
5.40±0.53c
C 6,7,8,10,12,15,29,75,92,93 10 9.90 Y=-23.08Pn+127.98Tr+173.86WUE-515.98 37.77±3.77b 5.50±0.69c 6.90±0.45b
D 3,53,57 3 2.97 Y=-27.77Pn+149.38Tr+177.49WUE-541.59 20.74±5.86e 8.10±0.78b 2.53±0.51f
E
5,11,14,20,24,27,34,36,39,
45,66,69,77,78,98,100
16
15.84
Y=-22.7Pn+121.38Tr+154.25WUE-384.52
19.65±4.08e
4.96±1.02c
3.98±0.46e
F 13,17,80,84 4 3.96 Y=-29.93Pn+154.98Tr+211.51WUE-698.21 21.22±4.65e 2.80±0.51d 7.55±0.59a
[1] 孙璐, 周宇飞, 汪澈 , 等. 高粱品种萌发期耐盐性筛选与鉴定. 中国农业科学, 2012,45(9):1714-1722.
[2] 高士杰, 陈冰, 胡喜连 . 高粱: 边际土地的拓荒者. 中国农村科技, 2010(5):68-69.
[3] 张福耀, 吴树彪, 柳青山 . 影响高粱饲用价值主要内在因素及其对策. 动物营养学报, 2016,28(1):1-8.
[4] 徐克章, 王英典, 徐惠风 , 等. 高粱叶片光合作用特性的研究. 吉林农业大学学报, 1999,21(3):1-6.
[5] Ohno Y . Varietal differences of photosynthetic efficiency and dry matter production in Indica rice. Technical Bulletin, 1976,9:1-72.
[6] 许大全, 沈允钢 . 作物高产高效生理学研究进展. 北京: 科学技术出版社, 1994: 17-23.
[7] 郑宝香, 满为群, 杜维广 , 等. 高光效大豆光合速率与主要光合生理指标及农艺性状的关系. 大豆科学, 2008,27(3):397-401.
[8] Hubbart S, Peng S, Horton P , et al. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966. Journal of Experimental Botany, 2007,58:3429-3438.
doi: 10.1093/jxb/erm192
[9] 曹树青, 翟虎渠, 杨图南 , 等. 水稻种质资源光合速率及光合功能期的研究. 中国水稻科学, 2001,15(1):29-34.
[10] Sadras V O, Lawson C, Montoro A . Photosynthetic trail in Australian wheat varieties released between 1958 and 2007. Field Crop Research, 2012,134:19-29.
doi: 10.1016/j.fcr.2012.04.012
[11] 王曙光, 史雨刚, 史华伟 , 等. 春小麦光合特性与抗旱性的关系研究. 作物杂志, 2017(6):23-29.
[12] 赵明, 李少昆, 王树安 , 等. 我国常用玉米自交系光合特性的聚类分析. 作物学报, 1999,25(6):733-741.
[13] 李少昆, 赵明, 许启风 , 等. 我国常用玉米自交系光合特性的研究. 中国农业科学, 1999,32(2):53-59.
[14] Zeng B, Xu X, Zhou S , et al. Effects of temperature and light on photosynthetic heterosis of an upland cotton hybrid cultivar. Crop Science, 2012,52:282-291.
doi: 10.2135/cropsci2011.03.0165
[15] 郭锐, 丁玉川, 董二伟 , 等. 影响高粱水分利用效率因素研究进展. 吉林农业, 2012(3):235-238.
[16] Kanemura T, Homma K, Ohsumi A , et al. Evaluation of genotypic variation in leaf photosynthetic rate and its associated factors by using rice diversity research set of germplasm. Photosynth Research, 2007,94:23-30.
doi: 10.1007/s11120-007-9208-7
[17] 冯国郡, 章建新, 李宏琪 , 等. 甜高粱光合生理特性及其与产量的关系. 西北农林科技大学学报(自然科学版), 2013,41(4):93-100.
[18] 朱凯, 王艳秋, 张飞 , 等. 不同细胞质甜高粱品种光合作用动态研究. 江苏农业科学, 2012,40(3):67-69.
[19] Xie T, Su P . Canopy and leaf photosynthetic characteristics and water use efficiency of sweet sorghum under drought stress. Russian Journal of Plant Physiology, 2012,59(2):224-234.
doi: 10.1134/S1021443712020197
[20] 解婷婷, 苏培玺 . 干旱区不同土地类型下甜高粱叶片光合特性和水分利用效率. 中国农业科学, 2011,44(2):271-279.
[21] 冯国郡, 章建新, 李宏琪 , 等. 甜高粱高光效种质的筛选和生理生化指标的比较. 吉林农业大学学报, 2013,25(3):260-268,277.
[22] 曹昌林, 白文斌, 张建华 , 等. 粒用高粱需水量及耗水特性的研究. 中国农学通报, 2015,31(21):86-91.
[23] Peng S, Krieg D R, Girma F S . Leaf photosynthetic rate is correlated with biomass and grain production in grain sorghum lines. Photosynth Research, 1991,28:1-7.
doi: 10.1007/BF00027171
[24] Balota M, Payne W A, Rooney W , et al. Gas exchange and transpiration ratio in sorghum. Crop Science, 2008,48:2361-2371.
doi: 10.2135/cropsci2008.01.0051
[25] 于贵瑞, 王秋凤 . 植物光合、蒸腾与水分利用的生理生态学. 北京: 科学出版社, 2010: 373-377.
[26] 郭春芳, 孙云, 陈常颂 , 等. 茶树品种光合与水分利用特性比较及聚类分析. 作物学报, 2008,34(10):1797-1804.
[27] 罗俊, 张华, 徐良年 , 等. 甘蔗不同品种光合特性比较及其聚类分析. 中国农业科学, 2005,38(8):1562-1569.
[28] 孙婴婴, 韩霁昌, 张岁岐 , 等. 陕西省不同年代旱地冬小麦光合与产量特征变化及其相互关系研究. 麦类作物学报, 2016,36(3):308-315.
[29] 许大全 . 光合作用学. 北京: 科学出版社, 2013: 403-406.
[30] 胡美君, 王义芹, 张亮 , 等. 不同基因型小麦及其优选杂交后代的光合作用特性. 作物学报, 2007,33(11):1879-1883.
[31] Nagamine T . Genetic analysis of photosynthetic capacity of single leaf analyzed by oxygen polarography in rice, Oryza sativa L. Japanese Journal of Breeding, 1991,41(2):301-307.
doi: 10.1270/jsbbs1951.41.301
[32] 许大全 . 光合作用效率. 上海: 上海科学技术出版社, 2002: 163-167.
[33] Henderson S, von Caemmerer S, Farquhar G D , et al. Correlation between carbon isotope discrimination and transpiration efficiency in lines of the C4 species Sorghum bicolor in the glasshouse and the field. Australian Journal of Plant Physiology, 1998,25:111-123.
doi: 10.1071/PP95033
[34] Maria G, Salas F, Katie S , et al. Genetic analysis and phenotypic characterization of leaf photosynthetic capacity in a sorghum (Sorghum spp. )diversity panel. Genetic Resources and Crop Evolution, 2014,62(6):939-950.
[35] 杨朝旭, 周宜君, 李璇 , 等. 不同灌溉方式下萝卜叶片光合速率和Rubisco的变化. 中央民族大学学报(自然科学版), 2005,14(1):58-63.
[36] Tomomi K, Koki H, Akihiro O , et al. Evaluation of genotypic variation in leaf photosynthetic rate and its associated factors by using rice diversity research set of germplasm. Photosynth Research, 2007,94:23-30.
doi: 10.1007/s11120-007-9208-7
[37] 山仑, 徐炳成 . 论高粱的抗旱性及在旱区农业中的地位. 中国农业科学, 2009,42(7):2342-2348.
[38] 罗俊, 王清丽, 张华 , 等. 不同甘蔗基因型光合特性的数值分类. 应用与环境生物学报, 2007,13(4):461-465.
[39] 张贵合, 郭华春 . 马铃薯不同品种(系)的光合特性比较与聚类分析. 作物学报, 2017,43(7):1067-1076.
[40] 杨旺兴, 卓伟, 马彬林 , 等. 水稻种质资源光合与水分利用特性比较及聚类分析. 福建农业学报, 2017,32(3):248-252.
[41] Kiani S P, Krieg D R, Nguyen H T . Parental influences on gas exchange rates in grain sorghum. Euphytica, 1990,50:139-146.
doi: 10.1007/BF00023637
[42] 倪先林, 赵甘霖, 刘天朋 , 等. 优质高配合力糯质高粱不育系45A的选育与应用. 园艺与种苗, 2014(11):11-14.
[43] 李团银, 柳青山, 张福耀 , 等. 新型A2细胞质高粱杂交种晋杂12号选育及利用研究. 中国农业科学, 1999,32(1):102-104.
[44] 王良群, 白志良, 王呈祥 , 等. 高粱杂交种晋杂18号的选育技术. 山西农业科学, 2002,30(4):23-24.
[45] 李奇 . 不同品种高粱酿造汾酒研究. 酿酒, 2014(1):23-26.
[46] 匡廷云 . 作物光能利用效率与调控. 济南: 山东科学技术出版社, 2004: 288-316.
[1] Wu Hao,Li Yanmin,Xie Chuanxiao. Research Advances on Physiological Basis and Gene Discovery for Thermal Tolerance in Crops [J]. Crops, 2018, 34(5): 1-9.
[2] Wu Ruixiang,Yang Jianchun,Wang Liqin,Guo Xiujuan. Evaluation of the Adaptability of Flax Drought Resistance Based on Multiple Statistics Analysis [J]. Crops, 2018, 34(5): 10-16.
[3] Wang Lei,Zhang Xiangping,Li Runxi,Niu Xiaoxia,Yang Shimei,Yan Zongshan,Zhang Ziqiang. Multivariate Analysis and Evaluation on Agronomic Traits and Grain Amylopectin Content of Barley [J]. Crops, 2018, 34(5): 71-76.
[4] Zhang Ruidong,Cao Xiong,Yue Zhongxiao,Liang Xiaohong,Liu Jing,Huang Minjia. Effects of Nitrogen and Density Interaction on Grain Yield and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2018, 34(5): 110-115.
[5] Zhang Jianhua,Guo Ruifeng,Cao Changlin,Fan Na,Jiang Baiyang,Li Guang,Shi Lijuan,Peng Zhidong,Bai Wenbin. Study on Effect and Safety of Controlling Weed in Sorghum Field by Several Stem and Leaf Treatment Herbicide [J]. Crops, 2018, 34(5): 162-166.
[6] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum [J]. Crops, 2018, 34(4): 138-142.
[7] Jiao Zhang,Qi Wu,Yufei Zhou,Yitao Wang,Ruidong Zhang,Ruidong Huang. Effects of Drought and Rewatering at Seedling and Filling Stages on Photosynthetic Characteristics and Dry Matter Production of Sorghum [J]. Crops, 2018, 34(3): 148-154.
[8] Bin Zhang,Jinxiu Li,Zhen Wang,Hao Feng,Jinbang Li. Correlation and Cluster Analysis of Agronomic Traits in Wheat Lines [J]. Crops, 2018, 34(3): 57-60.
[9] Shuai Zhang,Yuhui Pang,Zhenghong Wang,Liming Wang,Chunyan Chen,Zhankui Zeng,Chunping Wang. Variation of Agronomic Traits and Genetic Diversity in Wheat Germplasms [J]. Crops, 2018, 34(2): 44-51.
[10] Jianghui Cui,Fuzhu Cui,Jianfu Xue,Jianping Hao,Tianqing Du,Longxiang Sun. Effects of Fertilizer Reduction on Distribution and Stability of Soil Aggregates Based on Wheat-Sorghum System [J]. Crops, 2018, 34(1): 126-132.
[11] Lu Zhao,Zhiwei Yang,Liqun Bu,Ling Tian,Mei Su,Lei Tian,Yinxia Zhang,Shuqin Yang,Peifu Li. Analysis and Comprehensive Evalution of Phenotypic Genetic Diversity of Ningxia and Xinjiang Rice Germplasm [J]. Crops, 2018, 34(1): 25-34.
[12] Yanfang Hao,Liangqun Wang,Yong Liu,Wei Zhang,Wei Yang,Hongyan Bai,Bo Wu. Establishment of Sorghum Cell Suspensions with Young Leaves [J]. Crops, 2018, 34(1): 35-40.
[13] Wei Zhang,Liangqun Wang,Yong Liu,Yanfang Hao,Wei Yang,Hongyan Bai,Bo Wu. Optimization of the Factors Related to the Efficiency of Agrobacterium-Mediated Transformation of Sorghum [J]. Crops, 2018, 34(1): 56-61.
[14] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines) [J]. Crops, 2018, 34(1): 77-82.
[15] Kai Zhu,Fei Zhang,Fulai Ke,Yanqiu Wang,Jianqiu Zou. Effects of Planting Density on Yield and Physiological Characteristics of Sorghum Hybrids Suitable for Mechenization [J]. Crops, 2018, 34(1): 83-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .