Crops ›› 2021, Vol. 37 ›› Issue (6): 1-8.doi: 10.16035/j.issn.1001-7283.2021.06.001

    Next Articles

Effects of Root Exudates on Key Processes of Soil Nitrogen Cycling: A Review

Wang Rui(), Chen Shiyong, Chen Zhiqing, Cui Peiyuan, Lu Hao, Yang Yanju, Zhang Haipeng(), Zhang Hongcheng()   

  1. Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Innovation Center of Rice Cultivation Technology in Yangtza River Valley of Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
  • Received:2021-04-27 Revised:2021-07-05 Online:2021-12-15 Published:2021-12-16
  • Contact: Zhang Haipeng,Zhang Hongcheng E-mail:ruiwang0812@163.com;hpzhang@yzu.edu.cn;hczhang@yzu.edu.cn

Abstract:

Root exudates play an important role in soil nitrogen cycle, N2O emissions, and plants nitrogen use efficiency, and it is also at the forefront of soil science, plant nutrition, environmental science and interdisciplinary. In order to understand the effects of root exudates on the nitrogen cycle in the soil, this position paper presents the fractions and the methods to study root exudates. The effects of root exudates on the most important nitrogen conversion processes in soils were investigated. The ability to suppress soil nitrification, denitrification and N2O emissions through the release of exudates from plant roots is highlighted and the further prospects are suggested. This work will provide some references for the investigation of the nitrogen cycle mechanism of interaction effects between soil-plant-microorganisms to further improve the utilization rate of nitrogen fertilizer and reduce the environmental pollution caused by nitrogen fertilizer.

Key words: Root exudates, Nitrogen, Mineralization and immobilization, Nitrification, Denitrification, N2O emission

Fig.1

Inhibition of root exudates on soil nitrification AMO: ammonia monooxygenase; HR: hydroxylamine reductase; NXR: nitrite oxidoreductase; AOA: ammonia-oxidizing archaea; AOB: ammonia-oxidizing bacteria; NOB: nitrite oxidizing bacteria"

Table 1

Nitrification inhibitors and its function ways in root exudates"

根系分泌物成分
Root exudate component
植物
Plant
抑制途径
Inhibition pathway
参考文献
Reference
苯丙酯MHPP 玉凤花 AMO [48]
亚油酸Linoleic acid 玉凤花 AMO和HR [49]
亚麻酸Linolenic acid 高梁 AMO和HR [52-53]
脂肪醇1,9-decanediol 水稻 AMO [59-60]
脂肪酸化合物Sorgoleone 高粱 AMO和HR [61]
樱花素Sakuranetin 高粱 AMO和HR [62]
柠檬烯Limonene 西黄松 AMO [63]
[1] Sutton M A, Oenema O, Erisman J W, et al. Too much of a good thing. Nature, 2011, 472(2):159-161.
doi: 10.1038/472159a
[2] Hungate B A, Dukes J S, Shaw M R, et al. Nitrogen and climate change. Science, 2003, 302(5650):1512-1513.
pmid: 14645831
[3] Cai Z C, Shan Y H, Xu H. Effects of nitrogen fertilization on CH4 emissions from rice fields. Soil Science and Plant Nutrition, 2007, 53(4):353-361.
doi: 10.1111/j.1747-0765.2007.00153.x
[4] Date O P. Guatemala:FAO/WFP crop and food security assessment mission to Guatemala. (2010-02-23) [2021-04-01]. http://www.fao.org/giews/.
[5] Peng S B, Buresh R J, Huang J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 2006, 96(1):37-47.
doi: 10.1016/j.fcr.2005.05.004
[6] Chen D, Suter H C, Islam A, et al. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture:a review of enhanced efficiency fertilisers. Australian Journal of Soil Research, 2008, 46(4):289-301.
[7] Geng J B, Chen J Q, Sun Y B, et al. Controlled release urea improved nitrogen use efficiency and yield of wheat and corn. Soil Fertility and Crop Nutrition, 2016, 108(4):1666-1673.
[8] Zhu T B, Zhang J B, Cai Z C. The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation. Plant and Soil, 2011, 343(1):313-327.
doi: 10.1007/s11104-011-0720-3
[9] Subbarao G V, Sahrawat K L, Nakahara K, et al. A paradigm shift towards low-nitrifying production systems:the role of biological nitrification inhibition. Annals of Botany, 2013, 112(3):297-316.
doi: 10.1093/aob/mcs230
[10] Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of National Academy of Sciences of the United States of America, 2009, 106(2):3041-3046.
[11] Tilman D, Fargione J, Wolff B, et al. Forecasting agriculturally driven global environmental change. Science, 2001, 292(5515):281-284.
pmid: 11303102
[12] Glass A D M. Nitrogen use efficiency of crop plants:physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences, 2003, 22(5):453-470.
doi: 10.1080/07352680390243512
[13] Schafer A, Victor D G. Global passenger travel:implications for carbon dioxide emissions. Energy, 1999, 24(8):657-679.
doi: 10.1016/S0360-5442(99)00019-5
[14] Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 1999, 91(3):357-363.
doi: 10.2134/agronj1999.00021962009100030001x
[15] Li Y, Ouyang J, Wang Y Y, et al. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Scientific Reports, 2015, 5(1):1-10.
[16] Schlesinger W H. On the fate of anthropogenic nitrogen. Proceedings of National Academy of Sciences of the United States of America, 2009, 106(1):203-208.
[17] Hofstra N, Bouwman A F. Denitrification in agricultural soils:summarizing published data and estimating global annual rates. Nutrient Cycling Agroecosystems, 2005, 72(3):267-278.
doi: 10.1007/s10705-005-3109-y
[18] Burney J A, Davis S J, Lobell D B. Greenhouse gas mitigation by agricultural intensification. Proceedings of National Academy of Sciences of the United States of America, 2010, 107(26):12052-12057.
[19] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植株-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3):298-310.
doi: 10.3724/SP.J.1258.2014.00027
[20] Paterson E, Gebbing T, Abel C, et al. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytologist, 2007, 173(3):600-610.
doi: 10.1111/j.1469-8137.2006.01931.x pmid: 17244055
[21] East R. Microbiome:soil science comes to life. Nature, 2013, 501(26):S18-S19.
doi: 10.1038/501S18a
[22] 陆玉芳, 施卫明. 生物硝化抑制剂的研究进展及其农业应用前景. 土壤学报, 2021, 58(3):545-557.
[23] Wu H W, Haig T, Pratley J, et al. Allelo-chemicals in wheat (Triticum aestivum L.):cultivar difference in the exudation of phenolic acids. Journal of Agricultural and Food Chemistry, 2001, 27(1):125-135.
[24] Materechera S A, Dexter A R, Alston A M. Formation of aggregates by plant roots in homogenized soils. Plant and Soil, 1992, 142(1):69-79.
doi: 10.1007/BF00010176
[25] Soloducho J, Cabaj J. Phenolic compounds hybrid detectors. Journal of Biomaterials and Nanobiotechology, 2013, 4(3):17-27.
[26] Dessureault-Rompré J, Nowack B, Schulin D, et al. Modified micro suction cup rhizobox approach for the in-situ detection of organic acids in rhizosphere soil solution. Plant and Soil, 2006, 286(1):99-107.
doi: 10.1007/s11104-006-9029-z
[27] Greogory P J, Hinsinger P. New approaches to studying chemical and physical changes in the rhizosphere:An overview. Plant and Soil, 1999, 211(24):1-9.
doi: 10.1023/A:1004547401951
[28] Landi L, Valori F, Ascher J, et al. Root exudate effects on the bacterial communities,CO2 evolution,nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biology and Biochemistry, 2006, 38(3):509-516.
doi: 10.1016/j.soilbio.2005.05.021
[29] Landi L, Badalucco L, Nannipieri P. Changes in inorganic N and CO2 evolution in soil induced by L-methionine-suphoximine. Soil Biology and Biochemistry, 1995, 27(10):1345-1351.
doi: 10.1016/0038-0717(95)00052-G
[30] Jilling A, Keiluweit M, Gutknecht J, et al. Priming mechanisms providing plants and microbes access to mineral-associated organic matter. Soil Biology and Biochemistry, 2021, 158:108265.
doi: 10.1016/j.soilbio.2021.108265
[31] Nardi S, Concheri G, Pizzeghello D, et al. Soil organic matter mobilization by root exudates. Chemosphere, 2000, 41(5):653-658.
pmid: 10834364
[32] Neal A L, Ahmad S, Gordon-Weeks R, et al. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE, 2012, 7(4):e35489.
doi: 10.1371/journal.pone.0035489
[33] Rasmann S, Turlings T C J. Root signals that mediate mutualistic interactions in the rhizosphere. Current Opinion in Plant Biology, 2016, 32(8):62-68.
doi: 10.1016/j.pbi.2016.06.017
[34] Nardi N, Reniero F, Concheri G. Soil organic matter mobilization by root exudates of three maize hybrids. Chemosphere, 1997, 35(10):2237-2244.
doi: 10.1016/S0045-6535(97)00302-0
[35] Meier I C, Pritchard S G, Brzostek E R, et al. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. New Phytologist, 2015, 205(3):1164-1174.
doi: 10.1111/nph.13122 pmid: 25348688
[36] Pathan S I, Ceccherini M T, Pietramellara G, et al. Enzyme activity and microbial community structure in the rhizosphere of two maize lines differing in N use efficiency. Plant and Soil, 2015, 387(28):413-424.
doi: 10.1007/s11104-014-2306-3
[37] Narula N, Kothe E, Behl R K. Role of root exudates in plant-microbe interactions. Journal of Applied Botany and Food Quality, 2009, 82(6):122-130.
[38] Morris K A, Stark J M, Bugbee B, et al. The invasive annual cheat grass releases more nitrogen than crested wheatgrass through root exudation and senescence. Oecologia, 2016, 181(4):971-983.
doi: 10.1007/s00442-015-3544-7
[39] Taylor A E, Zeglin L H, Dooley S, et al. Evidence for different contributions of archaea and bacteria to the ammonia-oxidizing potential of diverse Oregon soils. Applied Environmental Microbiology, 2010, 76(23):7691-7698.
doi: 10.1128/AEM.01324-10
[40] Dinnes D L, Karlen D L, Jaynes D B, et al. Nitrogen management strategies to reduce nitrate leaching in tile drained Mid-Western soils. Agronomy Journal, 2002, 94(8):153-171.
doi: 10.2134/agronj2002.1530
[41] Hodge A, Robinson D, Fitter A H. Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science, 2000, 5(7):304-308.
pmid: 10871903
[42] Chuckran Peter F, Fofanov V, Hungate B A, et al. Rapid response of nitrogen cycling gene transcription to labile carbon amendments in a soil microbial community. mSystems, 2021, 6(3):e00161.
[43] Subbarao G V, Ishikawa T, Ito O, et al. A bioluminescence assay to detect nitrification inhibitors released from plant roots:a case study with Brachiaria humidicola. Plant and Soil, 2006, 288(1/2):101-112.
doi: 10.1007/s11104-006-9094-3
[44] Subbarao G V, Wang H Y, Ito O, et al. NH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant and Soil, 2007, 290(1):245-257.
doi: 10.1007/s11104-006-9156-6
[45] Leninger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442(17):806-809.
doi: 10.1038/nature04983
[46] Zakir H A K M, Subbarao G V, Pearse S J, et al. Detection,isolation and characterization of a root-exuded compound,methyl 3-(4-hydroxyphenyl) propionate,responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist, 2008, 180(2):442-451.
doi: 10.1111/nph.2008.180.issue-2
[47] Zhu X M, Liu D Y, Yin H J. Roots regulate microbial N processes to achieve an efficient NH4+ supply in the rhizosphere of alpine coniferous forests. Biogeochemistry, 2021, 12:1-19.
[48] Boudsocq S, Lata J C, Mathieu J, et al. Modelling approach to analyses the effects of nitrification inhibition on primary production. Functional Ecology, 2009, 23(1):220-230.
doi: 10.1111/fec.2009.23.issue-1
[49] Frank D A, Groffman P M. Plant rhizosphere N processes:what we don’t know and why we should care. Ecology, 2009, 90(6):1512-1519.
doi: 10.1890/08-0789.1
[50] Subbarao G V, Kishii M, Nakahara K, et al. Biological nitrification inhibition (BNI)-is there potential for genetic interventions in the Triticeae?. Breeding Science, 2009, 59(5):529-545.
doi: 10.1270/jsbbs.59.529
[51] Thilakarathna S K, Hernandez-Ramirez G. How does management legacy, nitrogen addition, and nitrification inhibition affect soil organic matter priming and nitrous oxide production?. Journal of Environmental Quality, 2020, 50(1):78-93.
doi: 10.1002/jeq2.v50.1
[52] Raaijmakers J M, Paulitz T C, Steinberg C, et al. The rhizosphere:a playground and battle-field for soil borne pathogens and beneficial microorganisms. Plant and Soil, 2009, 321(1):341-361.
doi: 10.1007/s11104-008-9568-6
[53] Walker T S, Bais H P, Grotewold E, et al. Root exudation and rhizosphere biology. Plant Physiology, 2003, 132(1):44-51.
doi: 10.1104/pp.102.019661
[54] Rengel Z, Marschner P. Nutrient availability and management in the rhizosphere:exploiting genotypic differences. New Phytologist, 2005, 168(2):305-312.
pmid: 16219070
[55] Wattenburger C J, Gutknecht J, Zhang Q, et al. The rhizosphere and cropping system,but not arbuscular mycorrhizae,affect ammonia oxidizing archaea and bacteria abundances in two agricultural soils. Applied Soil Ecology, 2020, 151:103540.
doi: 10.1016/j.apsoil.2020.103540
[56] Lata J C, Degrange V, Raynaud X, et al. Grass populations control nitrification in savanna soils. Functional Ecology, 2004, 18(4):605-611.
doi: 10.1111/fec.2004.18.issue-4
[57] Lu Y F, Zhang X N, Jiang J F, et al. Effect of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soils. Soil Biology and Biochemistry, 2019, 129:48-59.
doi: 10.1016/j.soilbio.2018.11.008
[58] Myrold D D, Tiedje J M. Establishment of denitrification capacity in soil:effects of carbon,nitrate and moisture. Soil Biology and Biochemistry, 1985, 17(6):819-822.
doi: 10.1016/0038-0717(85)90140-3
[59] 张晓楠, 陆玉芳, 杨婷, 等. 水稻生物硝化抑制剂1,9,-癸二醇的定量方法优化. 土壤, 2020, 52(6):1152-1157.
[60] Subbarao G V, Yoshashi T, Worthington M, et al. Suppression of soil nitrification by plants. Plant Science, 2015, 233(1):155-164.
doi: 10.1016/j.plantsci.2015.01.012
[61] Subbarao G V, Rondon M, Ito O, et al. Biological nitrification inhibition (BNI)- is it a widespread phenomenon?. Plant and Soil, 2007, 294(1):5-18.
doi: 10.1007/s11104-006-9159-3
[62] Subbarao G V, Ban T, Masahiro K, et al. Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming?. Plant and Soil, 2007, 299(1):55-64.
doi: 10.1007/s11104-007-9360-z
[63] Subbarao G V, Nakahara K, Hurtado M P, et al. Evidence for biological nitrification inhibition in Brachiaria pastures. Proceedings of National Academy of Sciences of the United States of America, 2009, 106(41):17302-17307.
[64] Subbarao G V, Nakahara K, Ishikawa T, et al. Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. Plant and Soil, 2008, 313(2):89-99.
doi: 10.1007/s11104-008-9682-5
[65] Coskun D, Britto D T, Shi W M, et al. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants, 2017, 3(6):1-9.
[66] Subbarao G V, Nakahara K, Ishikawa T, et al. Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant and Soil, 2013, 366(1):243-259.
doi: 10.1007/s11104-012-1419-9
[67] Wolt J D. A meta-evaluation of nitrapyrin agronomic and environmental effectiveness with emphasis on corn production in the Mid-Western USA. Nutrient Cycling in Agroecosystems, 2004, 69(1):23-41.
doi: 10.1023/B:FRES.0000025287.52565.99
[68] Gopalakrishnan S, Watanabe T, Pearse S J, et al. Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria,but not other major soil microorganisms. Soil Science and Plant Nutrition, 2009, 55(5):725-733.
doi: 10.1111/j.1747-0765.2009.00398.x
[69] Cooper A B. Suppression of nitrate formation with an exotic conifer plantation. Plant and Soil, 1986, 93(3):383-394.
doi: 10.1007/BF02374289
[70] Canfield D E, Glazer A N, Falkowski P G. The evolution and future of earth’s nitrogen cycle. Science, 2010, 330(4):192-196.
doi: 10.1126/science.1186120
[71] McCarty G W. Modes of action of nitrification inhibitors. Biology and Fertility of Soils, 1999, 29(1):1-9.
doi: 10.1007/s003740050518
[72] Weng B, Xie X Y, Yang J J, et al. Research on the nitrogen cycle in rhizosphere of Kandelia obovate under ammonium and nitrate addition. Marine Pollution Bulletin, 2013, 76(4):227-240.
doi: 10.1016/j.marpolbul.2013.08.034
[73] Shi S J, Richardson A E, O’Callaghan M, et al. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 2011, 77(3):600-610.
doi: 10.1111/j.1574-6941.2011.01150.x
[74] Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1):233-266.
doi: 10.1146/arplant.2006.57.issue-1
[75] Li B, Li Y Y, Wu H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of National Academy of Sciences, 2016, 113(23):6496-6501.
[76] Jalonen R, Nygren P, Sierra J. Root exudates of a legume tree as a nitrogen source for a tropical fodder grass. Nutrition Cycling and Agroecosystem, 2009, 85(3):203-213.
[77] Zhu Y H, Zhang S Z, Huang H L, et al. Effects of maize root exudates and organic acids on the desorption of phenanthrene from soils. Journal of Environmental Sciences, 2009, 21(7):920-926.
doi: 10.1016/S1001-0742(08)62362-1
[78] Yuan H Z, Zhu Z K, Liu S L, et al. Microbial utilization of rice root exudates:13C labeling and PLFA composition. Biology and Fertility of Soils, 2016, 52(5):615-627.
doi: 10.1007/s00374-016-1101-0
[79] Yin H J, Wheeler E, Phillips R P. Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology and Biochemistry, 2014, 78(6):213-221.
doi: 10.1016/j.soilbio.2014.07.022
[80] Vranova V, Rejsek K, Skene K R, et al. Methods of collection of plant root exudates in relation to plant metabolism and purpose:a review. Journal of Plant Nutrition Soil Science, 2013, 176(2):175-199.
doi: 10.1002/jpln.v176.2
[81] Michalet S, Rohr J, Warshan D, et al. Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy. Plant Physiology and Biochemistry, 2013, 72(3):169-177.
doi: 10.1016/j.plaphy.2013.05.003
[82] Suo B, Chen Q, Wu W X, et al. Chemotactic responses of Phytophthora sojae zoospores to amino acids and sugars in root exudates. Journal of General Plant Pathology, 2016, 82(2):142-148.
doi: 10.1007/s10327-016-0651-1
[83] Sun L, Lu Y F, Kronzucker H J, et al. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification. Journal of Plant Physiology, 2016, 198(1):81-88.
doi: 10.1016/j.jplph.2016.04.010
[84] Li H, Yang X R, Weng B, et al. The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil. Soil Biology and Biochemistry, 2016, 100(1):59-65.
doi: 10.1016/j.soilbio.2016.05.015
[85] Roque-Malo S, Woo D K, Kumar P. Modeling the role of root exudation in critical zone nutrient dynamics. Water Resources Research, 2020, 56:1-23.
[1] Li Xu, Fu Lidong, Wang Yu, Sui Xin, Ren Hai, Lü Xiaohong, Ma Chang, Du Meng, Mao Ting. Effects of Genetic Interaction between DEP1 and NRT1.1B on Nitrogen Use in Rice [J]. Crops, 2021, 37(6): 22-27.
[2] Gao Tiantian, Wang Demei, Wang Yanjie, Yang Yushuang, Chang Xuhong, Zhao Guangcai. Response of Different Spring Wheat Varieties to Nitrogen Treatment [J]. Crops, 2021, 37(6): 67-71.
[3] Deng Chaochao, Wang Lei, Xu Ye, Zhou Qi, Su Cuicui, Cai Xiaobin, Miao Pinggui, Zhao Haipeng, Zhang Yan, Wang Yucai, Zhang Xiangping. Effects of Nitrogen and Sowing Rate on Yield and Quality of Fresh Leaves in Barley [2011(07)814] [J]. Crops, 2021, 37(5): 108-113.
[4] Liu Wei, Zhou Jianxiong, Xie Yuanyuan, Zhang Xu, Xiong Yousheng, Xu Xiangyu, Yuan Jiafu, Xiong Hanfeng. Effects of One-Time Basal Application of Nitrogen Fertilizer on Fresh Ear Yield, Quality and Nitrogen Utilization Efficiency of Summer-Sown Fresh Sweet Corn [J]. Crops, 2021, 37(5): 134-139.
[5] Gao Jie, Li Xiaorong, Feng Guangcai, Li Qingfeng, Peng Qiu. Difference Analysis of Dry Matter and Nitrogen Accumulation and Translocation of Waxy Sorghum Applied in Different Eras in Guizhou Province [J]. Crops, 2021, 37(5): 50-56.
[6] Gao Jie, Feng Guangcai, Li Xiaorong, Li Qingfeng, Wang Can, Zhang Guobing, Zhou Lengbo, Peng Qiu. Effects of Nitrogen Fertilizer on Yield and Nitrogen Use Characteristics in Waxy Sorghum Cultivar "Hongyingzi" [J]. Crops, 2021, 37(4): 118-122.
[7] Zhang Jiawen, Lu Shaohao, Zhao Mingqin, Zhong Qiu, Wang Jun, Yi Kai, Xiang Huan. Effects of Nitrogen Application Rates on Carbon and Nitrogen Metabolism and Quality of Cigar Leaves in Sichuan [J]. Crops, 2021, 37(4): 159-165.
[8] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[9] Wu Ke, Xie Huimin, Liu Wenqi, Mo Bingmao, Wei Guoliang, Lu Xian, Li Zhuanglin, Deng Senxia, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Nitrogen, Phosphorus and Potassium Fertilizer on Rice Grain Yield and Yield Components in Double Cropping Rice Area of Southern China [J]. Crops, 2021, 37(4): 178-183.
[10] Meng Xiangyu, Ran Cheng, Liu Baolong, Zhao Zhexuan, Bai Jingjing, Geng Yanqiu. Effects of Straw Returning to Field and Nitrogen Application on Soil Nutrients and Rice Yield in Black Soil Areas of Northeast China [J]. Crops, 2021, 37(3): 167-172.
[11] Zhang Xi, Wang Huifang, Dai Zhuoyi, Xue Gang, Xu Shixiao, Yang Tiezhao. Effects of Genotype, Nitrogen Application Rate and Their Interactions on Polyphenols in Flue-Cured Tobacco [J]. Crops, 2021, 37(3): 84-90.
[12] Zhao Qingling, Lin Wen, Ren Aixia, Zhang Rongrong, Li Lei, Sun Min, Gao Zhiqiang. Effects of Topdressing in Spring on Population Construction and Grain Filling Process of Winter Wheat [J]. Crops, 2021, 37(3): 99-105.
[13] Liu Akang, Wang Demei, Wang Yanjie, Yang Yushuang, Ma Ruiqi, Gao Tiantian, Wang Yujiao, Kan Mingxi, Zhao Guangcai, Chang Xuhong. Effects of Seedling Regulation on Yield and Nitrogen Utilization of Late Sowing Wheat [J]. Crops, 2021, 37(2): 116-123.
[14] Fu Jing, Yin Haiqing, Wang Ya, Yang Wenbo, Zhang Zhen, Bai Tao, Wang Yuetao, Wang Fuhua, Wang Shengxuan. Effects of Nitrogen Topdressing Models on Root Growth and Grain Yield of Japonica Rice in the Region along Yellow River of Henan Province [J]. Crops, 2021, 37(2): 77-86.
[15] Xu Ning, Zhong Dasen, Wu Changfu. Agricultural Nitrogen Fertilizer Application in Australia and Its Enlightments to Nitrogen Fertilizer Application in China [J]. Crops, 2021, 37(1): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!