Crops ›› 2021, Vol. 37 ›› Issue (6): 115-121.doi: 10.16035/j.issn.1001-7283.2021.06.018

Previous Articles     Next Articles

Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi

Yang Na1,2(), Xi Jilong2, Wang Ke2, Xi Tianyuan2, Zhang Jiancheng2(), Yao Jingzhen2, Wang Jian2   

  1. 1Shanxi Province Key Laboratory of Organic Dry Farming/Institute of Dryland Farming, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
    2Cotton Research Institute, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, Shanxi, China
  • Received:2020-12-23 Revised:2021-07-08 Online:2021-12-15 Published:2021-12-16
  • Contact: Zhang Jiancheng E-mail:yn1629@163.com;zhangjc@126.com

Abstract:

In order to clarify the effects of irrigation patterns on water utilization and yield of late-sowing winter wheat in the Yuncheng Basin, with Jimai 22 as the material, five irrigation treatments for late-sowing winter wheat, W1 (no irrigation), W2 (irrigation at returning green stage), W3 (irrigation at jointing stage), W4 (irrigation at returning green and anthesis stages), W5 (irrigation at jointing and anthesis stages), and CK (irrigation at returning green and anthesis stages for traditional sowing winter wheat) were applied. The results showed that, the yield of late-sowing winter wheat under W1, W2 and W3 treatments were lower than that of CK in two experimental years. In the drought year, the yields of winter wheat under W4 and W5 treatments were significantly higher than that of CK, while the yield of CK was the highest in the normal year. Under the condition of late-sowing winter wheat with two irrigations, W5 treatment had the highest yield among all irrigation patterns, closely followed by the yield of W4 treatment, but the difference did not reach a significant level between them, the spike number, earbearing tiller rate, dry matter translocation amount, translocation rate, and contribution rate to grain before anthesis of late-sowing winter wheat with two irrigations for greenrising and anthesis were higher than winter wheat with two irrigations for jointing and anthesis. The water use efficiency of W2 and W3 treatments were the highest. There was no significant difference in water use efficiency between the W4 and W5 treatments. The results showed in southern Shanxi province, under the condition of late-sowing without winter water, irrigation at returning green and anthesis stages could maintain the stable production, delay the process of spike differentiation, and improve the frost resistance in the spring.

Key words: Winter wheat, Late-sowing, Irrigation, Yield, Water utilization

Fig.1

Precipitation during winter wheat growth period in 2018-2020"

Table 1

Time of irrigation"

年份
Year
播前0~2m
土壤储水量
Soil water storage
of 0~2m deep before
sowing (mm)
灌水时间(月-日)
Time of irrigation (month-day)
返青起身期
Returning
green stage
拔节期
Jointing
stage
开花期
Anthesis
2018-2019 421.8 03-03 03-28 05-01
2019-2020 468.7 03-02 03-24 04-29

Table 2

Population dynamics of different late sowing irrigation treatments of winter wheat"

处理
Treatment
基本苗
Basic seedling (×104/hm2)
最高总茎数
Maximum total tillers (×104/hm2)
穗数
Spike number (×104/hm2)
成穗率
Earbearing tiller rate (%)
2018-2019 2019-2020 2018-2019 2019-2020 2018-2019 2019-2020 2018-2019 2019-2020
CK 272.1±2.8b 285.2±30.4b 1604.8±48.1a 1815.9±12.7ab 552.3±63.8b 505.3±15.0a 34.41 27.82
W1 434.2±22.6a 423.2±5.2a 1044.5±56.6d 1705.8±26.9bc 423.6±19.2c 423.2±7.0b 29.65 24.81
W2 430.2±4.2a 434.9±33.4a 1428.7±56.6b 1723.8±24.1bc 532.2±7.6b 458.2±6.0b 42.09 26.58
W3 416.2±21.2a 430.2±12.2a 1264.6±22.6c 1677.9±38.2c 541.6±7.1b 493.2±41.0ab 39.93 29.39
W4 422.2±8.5a 428.2±13.9a 1356.6±17.0b 1847.9±58.0a 611.6±15.1a 495.2±35.0a 48.84 26.80
W5 420.2±19.8a 422.2±33.3a 1252.5±17.0c 1687.8±89.1c 593.6±21.7a 503.3±43.0a 44.41 29.82

Table 3

Effects of different irrigation patterns on yield and its components"

年份
Year
播期(月-日)
Sowing date (month-day)
处理
Treatment
穗数
Spike number (×104/hm2)
穗粒数
Grain number per spike
千粒重
1000-grain weight (g)
产量
Yield (kg/hm2)
2018-2019 10-08 CK 552.3±63.8b 25.6±1.3bc 38.62±0.40c 7440.5±11.3b
10-27 W1 423.6±19.2c 24.3±3.5c 42.06±0.23a 4588.4±24.6d
W2 532.3±7.6b 27.2±1.1b 39.38±0.33bc 7006.0±225.9c
W3 541.6±7.1b 32.9±1.7a 38.01±0.58c 6987.9±24.4c
W4 611.6±15.1a 32.8±2.2a 35.03±0.61d 7662.3±151.8a
W5 593.6±21.7ab 30.9±1.3ab 40.92±0.54ab 7969.6±61.9a
2019-2020 10-13 CK 505.3±15.0a 39.5±1.0a 49.25±0.98a 9187.9±196.6a
10-28 W1 423.2±7.0b 34.0±0.0c 44.33±0.57d 5919.6±334.7d
W2 458.2±6.0b 37.9±1.2b 45.53±0.84bc 7620.5±245.6c
W3 493.2±41.0a 37.5±1.0bc 46.87±0.69bc 8020.7±109.3b
W4 495.2±35.0a 34.3±1.1c 49.22±0.88a 8979.5±14.4a
W5 503.3±43.0a 36.9±0.6bc 45.46±1.72b 9104.6±115.5a

Table 4

Dry matter accumulation amount and translocation of different irrigation modes in 2019-2020"

处理
Treatment
干物质积累量Dry matter accumulation amount (kg/hm2) 花前干物质积累Dry matter accumulation before anthesis
开花期
Anthesis
成熟期
Maturity
开花―成熟
Anthesis-maturity
营养器官干物质运转量
Dry matter translocation
amount of nutritorium (kg/hm2)
干物质运转率
Dry matter
translocation rate (%)
对籽粒贡献率
Contribution rate
to grain (%)
CK 11856.13±958.34a 19820.96±471.45a 7964.84±486.89a 1223.09±392.66b 10.22±2.48c 13.31±4.27b
W1 8380.19±223.35c 12862.41±1139.71c 4482.22±1363.05b 1437.40±223.34b 17.12±2.21b 24.28±3.78a
W2 8927.66±144.42bc 15380.58±1012.97b 6452.92±868.55ab 1167.55±144.42b 13.07±1.41c 15.32±1.90c
W3 8805.20±128.84bc 16289.95±1443.06b 7473.70±1314.21ab 546.97±128.84c 6.19±1.37d 6.82±1.61c
W4 9535.77±480.66b 16093.72±560.22b 6557.95±1040.88ab 2421.53±56.39a 25.41±0.69a 26.97±0.63a
W5 9258.43±273.18bc 16202.68±431.62b 6944.26±704.79ab 2160.3±131.76a 23.32±0.74a 23.73±1.45a

Table 5

Water consumption composition in different irrigation treatments"

年份
Year
播期(月-日)
Sowing date
(month-day)
处理
Treatment
灌水量
Irrigation amount
(mm)
土壤贮水消耗量
Consumption of
soil water (mm)
降水量
Precipitation
(mm)
耗水量
Total water
consumption (mm)
WUE
[kg/(hm2·mm)]
2018-2019 10-08 CK 180 195.3 89.5 458.0 16.01
10-27 W1 0 175.7 89.5 265.2 17.30
W2 90 155.5 89.5 335.0 20.91
W3 90 181.1 89.5 360.6 19.38
W4 180 179.8 89.5 449.3 17.05
W5 180 173.5 89.5 443.0 17.99
2019-2020 10-13 CK 180 194.4 243.1 617.5 14.88
10-28 W1 0 219.9 174.1 325.0 18.22
W2 90 224.0 174.1 419.1 18.18
W3 90 218.6 174.1 413.7 19.39
W4 180 210.0 174.1 498.4 18.02
W5 180 209.4 174.1 494.5 18.41

Fig.2

Water contents of different soil layers at maturity stage of winter wheat"

[1] 山西省统计局. 山西统计年鉴.(2020-12-18)[2020-12-20]. http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2020/zk/indexch.html.
[2] 任文斌, 谢三刚, 王倩, 等. 山西南部水地小麦区试品系农艺性状比较及通径分析. 农学学报, 2016, 6(2):22-26.
[3] 李茂松, 王道龙, 钟秀丽, 等. 冬小麦霜冻害研究现状与展望. 自然灾害学报, 2005, 14(4):72-78.
[4] 苗爱梅, 武捷, 贾利冬. 1958-2008年山西气温变化的特征及趋势研究. 地球科学进展, 2010, 25(3):364-272.
[5] 武雪萍, 廖允成, 查燕 等. 黄土高原东部平原区作物节水减肥栽培理论与技术. 北京: 中国农业出版社, 2019:332-425.
[6] 钟秀丽, 王道龙, 吉田久, 等. 冬小麦品种抗霜冻力的影响因素分析. 作物学报, 2007, 33(11):1810-1814.
[7] 钟秀丽, 王道龙, 李茂松. 冬小麦品种抗霜力鉴定与霜冻害防御新对策. 自然灾害学报, 2006, 15(S1):132-136.
[8] 曾正兵, 钟秀丽, 王道龙, 等. 冬小麦拔节后幼穗低温敏感期的鉴定. 自然灾害学报, 2006, 15(6):297-300.
[9] 王志敏, 王璞, 李绪厚, 等. 冬小麦节水省肥高产简化栽培理论与技术. 中国农业科技导报, 2006, 8(5):38-44.
[10] 李建民, 王璞, 周殿玺, 等. 冬小麦水肥高效利用栽培技术原理. 北京: 中国农业大学出版社, 2000:1-16.
[11] 党建友, 裴雪霞, 王姣爱, 等. 灌水时间对冬小麦生长发育及水肥利用效率的影响. 应用生态学报, 2012, 23(10):2745-2750.
[12] 宜丽宏, 王丽, 张孟妮, 等. 不同灌溉方式对冬小麦生长发育及水分利用效率的影响. 灌溉排水学报, 2017, 36(10):14-19.
[13] 亢秀丽, 马爱平, 靖华, 等. 晋南盆地灌水、秸秆还田对小麦产量及水分利用效率的影响. 农学学报, 2012, 2(12):1-5.
[14] 郝明德, 王旭刚, 党廷辉, 等. 黄土高原旱地小麦多年定位施用化肥的产量效应分析. 作物学报, 2004, 30(11):1108-1112.
[15] 吕丽华, 梁双波, 张丽华, 等. 不同小麦品种产量对冬前积温变化的响应. 作物学报, 2016, 42(1):149-156.
[16] 王东, 于振文, 贾效. 播期对优质强筋冬小麦籽粒产量和品质的影响. 山东农业科学, 2004(2):25-26.
[17] 杨健, 张保军, 毛建昌, 等. 播期与密度对冬小麦西农9871籽粒产量的影响. 麦类作物学报, 2011, 31(3):529-534.
[18] 董志强, 张丽华, 吕丽华, 等. 不同灌溉方式对冬小麦光合速率及产量的影响. 干旱地区农业研究, 2015, 33(6):1-7.
[19] 郑成岩, 于振文, 马兴华, 等. 高产小麦耗水特性及干物质的积累与分配. 作物学报, 2008, 34(8):1450-1458.
[20] 张胜全, 方保停, 王志敏, 等. 春灌模式对晚播冬小麦水分利用及产量形成的影响. 生态学报, 2009, 29(4):2035-2044.
[21] Liu C M, Zhang X Y, Zhang Y Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agricultural and Forest Meteorology, 2002, 111(2):109-120.
doi: 10.1016/S0168-1923(02)00015-1
[22] 王淑芬, 张喜英, 裴冬. 不同供水条件对冬小麦根系分布、产量及水分利用效率的影响. 农业工程学报, 2006, 22(2):27-32.
[23] 居辉, 兰霞, 李建民, 等. 不同灌溉制度下冬小麦产量效应与耗水特征研究. 中国农业大学学报, 2000, 5(5):23-29.
[24] 方保停, 邵运辉, 岳俊芹, 等. 灌水次数对豫北小麦水分利用和产量的影响. 西南农业学报, 2017, 30(2):280-284.
[25] 李志宏, 马俊永, 高林森. 河北省未来农艺节水的途径与关键技术. 华北农学报, 2003, 18(院庆专刊):17-19.
[26] 崔世明, 于振文, 王东, 等. 灌水时期和数量对小麦耗水特性及产量的影响. 麦类作物学报, 2009, 29(3):442-446.
[27] 刘志良, 曹彩云, 潘胤霖, 等. 不同时间春灌一水对冬小麦生长发育及产量的影响. 河北农业科学, 2020, 24(2):35-39.
[28] 孙明清, 江彦军, 张辉, 等. 春灌1水条件下灌溉时间对冬小麦产量及产量构成的影响. 河北农业科学, 2019, 23(6):27-30.
[29] Mahfoozi S, Limin A E, Ahakpaz F, et al. Phenological development and expression of freezing resistance in spring and winter wheat under field conditions in northwest Iran. Field Crops Research, 2006, 97(2):182-187.
doi: 10.1016/j.fcr.2005.09.012
[30] 孟自力, 陈昆, 闫向泉, 等. 气象因子变化及其对小麦生产的影响. 安徽农业科学, 2018, 46(7):27-29.
[31] 冯玉香, 何维勋, 孙忠富, 等. 我国冬小麦霜冻害的气候分析. 作物学报, 1999, 25(3):335-340.
[1] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
[2] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[3] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[4] Gao Jia, Wang Jiao, Wang Song, Liu Hongjian, Kang Jia, Shen Hong, Wang Haili, Ren Shaoyong. Effects of Biochar-Based Fertilizer on Soil Urease Activity and Yield of Potato [J]. Crops, 2021, 37(6): 134-138.
[5] Li Xinhao, Li Jun, Wan Lin, Liu Lixin, Liu Junquan, Ma Ni. Effects of No-Tillage and Drilling on Growth, Root System and Yield of Rapeseed (Brassica napus L.) in Hilly Area [J]. Crops, 2021, 37(6): 139-144.
[6] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[7] Guo Mingming, Wang Kangjun, Zhang Guangxu, Sun Zhongwei, Li Jun, Zhang Yueshu, Dai Dandan, Chen Feng, Fan Jiwei. Regulation of Sowing Date and Row Spacing on Grain Yield and Quality of Wheat [J]. Crops, 2021, 37(6): 152-158.
[8] Zhang Panpan, Zhang Hongpeng, Guo Yaning. Effects of Two Plant Growth Regulators on Photosynthetic Characteristics and Yield of Proso Millet [J]. Crops, 2021, 37(6): 159-163.
[9] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[10] Wang Xin, Wang Cai. Effects of Different Sowing Dates and Seeding Rates on the Growth Characteristics and Yield of Winter Wheat [J]. Crops, 2021, 37(6): 182-188.
[11] Cai Lijun, Zhang Jingtao, Liu Jingqi, Gai Zhijia, Guo Zhenhua, Zhao Guifan. Effects of Long-Term No-Tillage Straw Returning on Soil Organic Carbon and Soybean Yield in Cold Region [J]. Crops, 2021, 37(6): 189-192.
[12] Liu Weixing, Fan Xiaoyu, Zhang Fengye, He Qunling, Chen Lei, Li Ke, Wu Jihua. Effects of Different Preceding Crops and Seed Coating Agent Dosage on Peanut Diseases, Pests and Yield [J]. Crops, 2021, 37(6): 199-204.
[13] Li Xin, Jin Guanghui, Wang Pengcheng, Wang Ziwen. Analysis of Stability of Potato Varieties (Strains) Starch and Yield Performance [J]. Crops, 2021, 37(6): 51-57.
[14] Gao Tiantian, Wang Demei, Wang Yanjie, Yang Yushuang, Chang Xuhong, Zhao Guangcai. Response of Different Spring Wheat Varieties to Nitrogen Treatment [J]. Crops, 2021, 37(6): 67-71.
[15] Chen Zhongcheng, Jin Xijun, Li He, Zhou Weixin, Qiang Binbin, Liu Jia, Zhang Yuxian. Effects of Exogenous Melatonin on Growth, Photosynthetic Fluorescence Characteristics and Yield Components of Adzuki Bean [J]. Crops, 2021, 37(6): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!