Crops ›› 2022, Vol. 38 ›› Issue (4): 115-123.doi: 10.16035/j.issn.1001-7283.2022.04.016

Previous Articles     Next Articles

Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System

Tang Jianpeng1(), Chen Jingdu1, Wen Kai2, Zhang Mingwei1, Xie Chenglin1(), Lu Peiling1, Min Sigui3, Wang Qiluan4, Cheng Jiemin5   

  1. 1Yangzhou Agricultural Technology Comprehensive Service Center, Yangzhou 225002, Jiangsu, China
    2Yangzhou Hanjiang District Crop Technology Promotion Center, Yangzhou 225100, Jiangsu, China
    3Gaoyou Crop Cultivation Technology Guidance Station, Gaoyou 225600, Jiangsu, China
    4Songqiao Town Agriculture and Rural Bureau, Gaoyou 225600, Jiangsu, China
    5Nanjing Xiaozhuang University, Nanjing 210000, Jiangsu, China
  • Received:2021-04-27 Revised:2021-07-09 Online:2022-08-15 Published:2022-08-22
  • Contact: Xie Chenglin E-mail:529243748@qq.com;yztgz@163.com

Abstract:

In order to select the rice varieties with high quality, high yield and multiple resistance under rice-crayfish farming system, and improve the comprehensive benefits of rice and crayfish, the material production and yield formation characteristics of eleven good eating Japonica rice varieties as the experiment materials in the rice-crayfish farming system were studied. The results showed that under the rice-crayfish farming system, dry matter accumulation of different varieties accorded with Logistic curves. The rapid growth period of dry matter was from 10d after jointing to 10d after heading. The maximum growth rate and the maximum dry matter accumulation period appeared between the jointing and full heading periods. The average growth rate of dry matter of Sidao 301, Nanjing 5718 and Nanjing 9108 were higher, and the dry matter accumulation was more. The material transfer of stems and leaves in the later stage of Sidao 301, Nanjing 9108 and Nanjing 5718 were more. The material transfer rate and contribution rate of stem-sheath of Fengjing 1606, Jinxiangyu 1 and Nanjing 9108 were higher. The material transfer rate and contribution rate of leaves of Wuxiangjing 5245, Ningxiangjing 11 and Sidao 301 were higher. The dry matter production was mainly related to the yield and 1000-grain weight. The seed setting rate was mainly affected by the transport of dry matter in the later period. Under the rice-crayfish farming system, we could select Sidao 301 and Nanjing 5718 which had strong growth potential, fast and more dry matter accumulation, and large panicle and high yield.

Key words: Rice-crayfish farming system, Japonica rice with good eating quality, Material production, Yield

Table 1

Reproductive process and whole growth duration of different varieties"

品种
Variety
播种期
Sowing
stage
移栽期
Transplanting
stage
齐穗期
Full heading
stage
成熟期
Maturity
stage
播种―拔节
Sowing-
jointing (d)
拔节―齐穗
Jointing-
heading (d)
齐穗―成熟
Heading-
maturity (d)
全生育期
Whole growth
duration (d)
南粳5718 Nanjing 5718 05-23 06-16 08-26 10-23 74 21 58 153
扬粳5118 Yangjing 5118 05-23 06-16 08-23 10-21 73 19 59 151
金香玉1号Jinxiangyu 1 05-23 06-16 08-28 10-28 75 22 61 158
扬辐粳11号Yangfujing 11 05-23 06-16 08-28 10-27 75 22 60 157
丰粳1606 Fengjing 1606 05-23 06-16 08-28 10-28 75 22 61 158
泗稻301 Sidao 301 05-23 06-16 08-29 10-28 75 23 60 158
扬农稻1号Yangnongdao 1 05-23 06-16 08-30 10-29 76 23 60 159
武香粳113 Wuxiangjing 113 05-23 06-16 08-24 10-25 75 18 62 155
南粳9108 Nanjing 9108 05-23 06-16 08-25 10-26 75 19 62 156
武香粳5245 Wuxiangjing 5245 05-23 06-16 09-01 10-30 77 23 60 160
宁香粳11 Ningxiangjing 11 05-23 06-16 09-01 10-30 77 23 60 160

Fig.1

Dynamics of tillers in populations of different varieties"

Table 2

Dry matter accumulation dynamics of different varieties in different periods t/hm2"

品种
Variety
高峰苗
Peak
seedling
拔节期
Jointing
stage
齐穗期
Full heading
stage
乳熟期
Milk-ripe
stage
成熟期
Maturity
stage
高峰―拔节
Peak-
jointing
拔节―齐穗
Jointing-
heading
齐穗―乳熟
Heading-
milk-ripe
乳熟―成熟
Milk-ripe-
maturity
南粳5718 Nanjing 5718 2.30cd 5.74bc 13.73b 17.51ab 18.81bc 3.45a 7.98ab 3.78b 1.30bc
扬粳5118 Yangjing 5118 2.50bcd 5.81bc 12.11de 17.01ab 18.06de 3.31ab 6.30de 4.89a 1.05c
金香玉1号Jinxiangyu 1 2.25d 5.13e 11.25g 13.54f 15.55h 2.88b 6.12e 2.29d 2.01abc
扬辐粳11号Yangfujing 11 2.32cd 5.29e 12.42de 14.98e 16.87fg 2.97ab 7.13bcd 2.56cd 1.90ab
丰粳1606 Fengjing 1606 2.52bcd 5.40d 12.90cd 15.85d 17.85ef 2.88b 7.50bc 2.95bcd 2.00abc
泗稻301 Sidao 301 2.76ab 6.13ab 14.78a 17.74a 20.43a 3.37ab 8.65ab 2.96bcd 2.69a
扬农稻1号Yangnongdao 1 2.41cd 5.25e 11.59fg 15.00e 16.87g 2.84bc 6.34de 3.41bc 1.86abc
武香粳113 Wuxiangjing 113 2.81a 5.11e 11.61fg 15.57de 17.69ef 2.30c 6.50de 3.96ab 2.12ab
南粳9108 Nanjing 9108 2.57abc 5.73bc 13.20bc 16.81bc 19.18b 3.17ab 7.47bc 3.61bc 2.37a
武香粳5245 Wuxiangjing 5245 2.75ab 6.24a 13.08bcd 16.83bc 19.11b 3.48a 6.84cde 3.75b 2.28ab
宁香粳11 Ningxiangjing 11 2.38cd 5.32de 13.04bcd 16.12cd 18.38cd 2.94ab 7.72bc 3.08bcd 2.26ab

Table 3

Logistic equation analysis for dry matter accumulation per unit area of different rice varieties"

品种
Variety
回归方程
Regression equation
R2 t0 (d) t1 (d) t2 (d) t (d) Vmax
[kg/(hm2·d)]
Va
[kg/(hm2·d)]
南粳5718 Nanjing 5718 y =1253.70/(1+602.99e-0.0777t) 0.9926** 82 65 98 33 365.3 122.91
扬粳5118 Yangjing 5118 y =1203.84/(1+705.78e-0.0813t) 0.9793** 81 64 96 31 367.0 119.59
金香玉1号Jinxiangyu 1 y =1036.49/(1+176.99e-0.0613t) 0.9924** 84 63 104 41 238.3 98.40
扬辐粳11号Yangfujing 11 y =1124.78/(1+241.07e-0.0651t) 0.9914** 84 64 103 39 274.6 107.46
丰粳1606 Fengjing 1606 y =1189.76/(1+234.93e-0.0646t) 0.9909** 85 64 103 39 288.2 112.95
泗稻301 Sidao 301 y =1361.94/(1+200.30e-0.0617t) 0.9898** 86 65 106 41 315.1 129.30
扬农稻1号Yangnongdao 1 y =1124.27/(1+94.76e-0.0450t) 0.9919** 101 72 128 56 189.7 106.07
武香粳113 Wuxiangjing 113 y =1179.54/(1+202.37e-0.0627t) 0.9834** 85 64 104 40 277.3 114.15
南粳9108 Nanjing 9108 y =1278.69/(1+262.96e-0.0656t) 0.9923** 85 65 103 39 314.6 122.95
武香粳5245 Wuxiangjing 5245 y =1274.03/(1+155.03e-0.0584t) 0.9990** 86 64 107 43 279.0 119.44
宁香粳11 Ningxiangjing 11 y =1225.58/(1+118.65e-0.0487t) 0.9871** 98 71 123 52 223.8 114.90

Table 4

Difference in dry matter transport per unit area in different varieties"

品种
Variety
干物质转运量
Dry matter transport amount (t/hm2)
干物质转运率
Dry matter transport rate (%)
干物质贡献率
Dry matter transport contribution rate (%)
茎鞘
Stem-sheath
叶片
Leaf
合计
Total
茎鞘
Stem-sheath
叶片
Leaf
合计
Total
茎鞘
Stem-sheath
叶片
Leaf
合计
Total
南粳5718 Nanjing 5718 1.47bc 0.85ab 2.32b 17.05c 24.99b 23.93bc 19.82b 11.53b 31.36a
扬粳5118 Yangjing 5118 1.52b 0.76b 2.28b 19.90b 24.44b 26.93a 18.49b 9.25c 27.74bc
金香玉1号Jinxiangyu 1 1.52b 0.47b 1.99c 21.36ab 16.43d 24.92b 24.22a 7.44d 31.66a
扬辐粳11号Yangfujing 11 1.59b 0.41c 2.00c 19.89b 13.37d 22.09bc 23.23a 5.94e 29.17b
丰粳1606 Fengjing 1606 1.66b 0.76b 2.42ab 20.23b 22.27b 26.31a 22.56ab 10.33bc 32.89a
泗稻301 Sidao 301 1.49bc 1.08a 2.57a 16.52c 27.56ab 24.77b 18.14bc 13.10ab 31.25ab
扬农稻1号Yangnongdao 1 1.37c 0.46c 1.83c 18.20bc 15.47d 21.10c 19.27b 6.52de 25.78cd
武香粳113 Wuxiangjing 113 1.34c 0.65b 2.00c 17.42c 21.80bc 22.92bc 16.63c 8.10cd 24.73d
南粳9108 Nanjing 9108 1.84a 0.69b 2.53a 22.98a 19.86c 28.27a 21.65ab 8.12cd 29.77b
武香粳5245 Wuxiangjing 5245 1.02d 1.17a 2.19bc 13.08d 29.44ab 22.83bc 12.45d 14.19a 26.63bc
宁香粳11 Ningxiangjing 11 1.07d 1.18a 2.25b 13.49d 32.19a 24.08b 14.07cd 15.54a 29.61b

Fig.2

Difference in root damage flow rate and weight per panicle of different varieties"

Fig.3

Difference in partitioning of dry matter accumulation of different varieties in mature period"

Table 5

Difference in productive tiller ratio, yield and its components of different varieties"

品种
Variety
成穗率
Productive tiller
percentage (%)
有效穗数
Effective panicle number
(×104/hm2)
穗粒数
Grains number
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
实际产量
Actual yield
(t/hm2)
南粳5718 Nanjing 5718 60.78d 292.95cd 130.38c 92.25c 31.25a 10.36b
扬粳5118 Yangjing 5118 60.53d 310.50bcd 124.00d 95.05a 28.50c 9.96bcd
金香玉1号Jinxiangyu 1 67.01b 260.55e 161.44a 90.30d 22.81i 8.21e
扬辐粳11号Yangfujing 11 62.08c 298.35cd 119.33e 76.47f 28.41c 7.30f
丰粳1606 Fengjing 1606 73.91a 302.40d 125.24d 92.26c 27.59d 9.81cd
泗稻301 Sidao 301 60.33d 300.60cd 146.75b 91.78cd 29.39b 11.13a
扬农稻1号Yangnongdao 1 63.59c 306.45cd 126.81cd 83.05e 23.66h 7.22f
武香粳113 Wuxiangjing 113 68.75ab 351.00a 131.28c 92.16c 24.59g 9.78cd
南粳9108 Nanjing 9108 66.79b 332.10b 128.17c 93.44b 27.11e 10.51b
武香粳5245 Wuxiangjing 5245 63.05c 346.50a 129.71c 92.65c 26.91e 10.60b
宁香粳11 Ningxiangjing 11 60.80d 326.70b 127.48cd 94.77ab 26.06f 9.51d

Table 6

Correlation analysis between dry matter production and yield and its components"

项目
Item
有效穗数
Number of
productive panicles
穗粒数
Grains number
per panicle
结实率
Seed-setting
rate
千粒重
1000-grain
weight
实际产量
Actual
yield
物质生产Material production
高峰苗干物质重Dry matter weight at peak seedling stage 0.718** -0.047 0.363 0.047 0.615*
拔节期干物质重Dry matter weight at jointing stage 0.239 -0.026 0.374 0.617* 0.724*
齐穗期干物质重Dry matter weight at heading stage 0.095 -0.036 0.283 0.771** 0.699*
成熟期干物质重Dry matter weight at maturity stage 0.464 -0.159 0.484 0.655* 0.853**
高峰―拔节物质积累Dry matter accumulation at peak-jointing stage -0.139 -0.004 0.219 0.677* 0.473
拔节―齐穗物质积累Dry matter accumulation at jointing- heading stage 0.007 -0.034 0.183 0.697* 0.553
干物质快增期Duration of rapid growth of dry matter (∆t) 0.150 0.010 -0.252 0.607* -0.434
干物质最大增速The maximum rate of dry matter accumulation (Vmax) 0.016 -0.142 0.397 0.806** 0.653*
干物质平均增速The average rate of dry matter accumulation (Va) 0.425 -0.200 0.514 0.738** 0.869**
根系伤流量Bleeding instensity perhill 0.305 0.133 0.460 0.550 0.783**
单茎重Single stem weight -0.603* 0.387 0.087 0.629* 0.342
物质转运Material transport
叶片物质输出量The material output of leaf 0.425 -0.014 0.648* 0.387 0.756**
茎叶物质输出总量The total material output of stem and leaf 0.098 0.004 0.586 0.654* 0.825**
叶片物质转运率The material transport rate of leaf 0.433 -0.027 0.743** 0.354 0.758**
茎叶物质转运率The material transport rate of leaf and stem -0.059 0.101 0.623* 0.253 0.544
茎鞘物质贡献率The material transport contribution rate of stem -0.725** 0.211 -0.426 -0.029 -0.438
叶片物质贡献率The material transport contribution rate of leaf 0.304 0.039 0.617* 0.350 0.669*
茎叶物质贡献率The material transport contribution rate of leaf and stem -0.657* 0.347 0.149 0.388 0.195
物质分配Material distribution
叶片干物质占比Proportion of leaf dry matter -0.122 -0.146 0.619* -0.385 -0.663*
[1] 秦尊文. 以“虾稻共作”模式为抓手推进体制机制创新——潜江市全国中小城市综合改革的观察与思考. 中国发展, 2016, 16(6):51-56.
[2] 曹凑贵, 江洋, 汪金平, 等. 稻虾共作模式的“双刃性”及可持续发展策略. 中国生态农业学报, 2017, 25(9):1245-1253.
[3] 2020中国小龙虾产业发展报告. 中国水产, 2020, 536(7):8-17.
[4] 石世杰, 李纯杰, 曹凑贵, 等. 稻虾共作模式下不同播期对水稻产量和品质的影响. 华中农业大学学报, 2020, 39(2):25-32.
[5] 寇祥明, 韩光明, 吴雷明, 等. 虾苗密度对稻虾共作模式下稻虾生长及氮磷利用的影响. 扬州大学学报(农业与生命科学版), 2020, 41(2):22-27.
[6] 彭成林, 袁家富, 贾平安, 等. 长期稻虾共作模式对不同施氮量下直播水稻产量和氮肥利用效率的影响. 河南农业科学, 2020, 49(4):15-21.
[7] 李静, 王术, 王伯伦, 等. 粳稻品种干物质的积累、分配及运转特性研究. 江苏农业科学, 2009, 271(5):83-85.
[8] 李敏, 张洪程, 杨雄, 等. 水稻高产氮高效型品种的物质积累与转运特性. 作物学报, 2013, 39(1):101-109.
[9] 戚昌瀚, 贺浩华, 石庆华, 等. 大穗型水稻的物质生产特性与产量能力的研究. 作物学报, 1986, 12(2):121-127.
[10] 孙加威, 李娜, 王春雨, 等. 栽插方式和施钾量对杂交籼稻叶源特征及干物质积累与转运的影响. 湖南农业大学学报(自然科学版), 2017, 43(2):117-124.
[11] 杨林生, 张宇亭, 杨柳青, 等. 不同氮钾水平对水稻干物质累积、转运及产量的影响. 中国土壤与肥料, 2019, 282(4):89-95.
[12] 曹小闯, 李烨锋, 吴龙龙, 等. 有机水溶肥对水稻干物质、氮素积累和转运的影响. 作物杂志, 2020(5):110-118.
[13] 刘奇华, 孙召文, 信彩云, 等. 孕穗期施硅对高温下扬花灌浆期水稻干物质转运及产量的影响. 核农学报, 2016, 30(9):1833-1839.
doi: 10.11869/j.issn.100-8551.2016.09.1833
[14] 孙琪, 耿艳秋, 金峰, 等. 播期对直播水稻产量、花后各器官干物质和氮素积累及转运的影响. 作物杂志, 2020(5):119-126.
[15] 梁建生, 曹显祖. 杂交水稻叶片的若干生理指标与根系伤流强度关系. 江苏农学院学报, 1993, 14(4):25-30.
[16] 刘佳, 张杰, 秦文婧, 等. 施氮和接种根瘤菌对红壤旱地花生生长及氮素累积的影响. 核农学报, 2016, 30(12):2441-2450.
doi: 10.11869/j.issn.100-8551.2016.12.2441
[17] 崔党群. Logistic曲线方程的解析与拟合优度测验. 数理统计与管理, 2005, 24(1):112-115.
[18] 霍中洋, 杨雄, 张洪程, 等. 不同氮肥群体最高生产力水稻品种各器官的干物质和氮素的积累与转运. 植物营养与肥料学报, 2012, 18(5):1035-1045.
[19] 闫平, 张书利, 于艳敏, 等. 不同水稻品种干物质积累与产量性状的相关研究. 中国农学通报, 2015, 31(18):1-6.
[20] 李莉, 张锡洲, 李廷轩, 等. 不同产量类型水稻基因型干物质积累与磷素吸收利用. 植物营养与肥料学报, 2014, 20(3):588-597.
[21] 李晓芸, 孟天瑶, 戴其根. 中熟类型甬优籼粳杂交稻组合产量优势形成及其形态生理特征. 中国稻米, 2017, 23(1):10-16.
[22] 龚金龙, 邢志鹏, 胡雅杰, 等. 籼、粳超级稻光合物质生产与转运特征的差异. 作物学报, 2014, 40(3):497-510.
[23] 赵步洪, 奚岭林, 杨建昌, 等. 两系杂交稻茎鞘物质运转与籽粒充实特性研究. 西北农林科技大学学报(自然科学版), 2004, 32(10):9-14,19.
[24] 刘琦, 胡剑锋, 周伟, 等. 四川盆地不同类型水稻品种机插栽培的干物质生产及产量特性分析. 中国水稻科学, 2019, 33(1):35-46.
doi: 10.16819/j.1001-7216.2019.8049
[25] 单玉华, 蔡祖聪, 韩勇, 等. 淹水土壤有机酸积累与秸秆碳氮比及氮供应的关系. 土壤学报, 2006, 43(11):941-947.
[26] Chung I M, Ahn J K, Yun S J. Identification of allelopathic compounds from rice (Oryza sativa L.) straw and their biological activity. Canadian Journal of Plant Science, 2001, 4(81):815-819.
[27] 胡雅杰, 曹伟伟, 钱海军, 等. 钵苗机插密度对不同穗型水稻品种产量、株型和抗倒伏能力的影响. 作物学报, 2015, 41(5):743-757.
[1] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[2] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[3] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[4] Li Zujun, Jiang Xue, Yang Tonglian, Wu Chaoxin, Zhang Xichun, Jiang Xuehai, Long Wuhua, Zhang Yushan, Zhu Susong. Effects of Different Fertilizer Ratios on Yield and Taste Quality of Guizhouhe Goudang No.1 [J]. Crops, 2022, 38(4): 160-166.
[5] Ma Ke, Feng Lei, Zhao Xiatong, Zhang Liguang, Yuan Xiangyang, Dong Shuqi, Guo Pingyi, Song Xi’e. Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10 [J]. Crops, 2022, 38(4): 172-178.
[6] Zhao Shifeng, Cao Lixia, Shi Bihong, Liu Wenting, Zhao Xuefeng, Liu Junxin, Zhang Lixia, Li Jiahao. Dry Matter Accumulation and Productivity Potential Evaluation of Main Forage Oat Varieties in China [J]. Crops, 2022, 38(4): 179-186.
[7] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[8] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
[9] Zhou Wuxian, Li Mengge, Tan Xuhui, Wang Youyuan, Wang Hua, Jiang Xiaogang, Duan Yuanyuan, Zhang Meide. Effects of Sowing Density on Growth, Nutritional Quality and Soil Enzyme Activity of Pinellia ternata in Different Seasons [J]. Crops, 2022, 38(4): 205-213.
[10] Qiao Yujia, Wei Ling, Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan. Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations [J]. Crops, 2022, 38(4): 221-226.
[11] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[12] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[13] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[14] Wang Xiaochun, Zhu Dexin, Yang Tianhui, Wang Chuan, Yang Weidi, Gao Ting, Liang Xiaojun. Correlation Analysis of Main Agronomic Characteristics of Different Alfalfa Varieties and Comparison of Hay Yield in Yellow River Irrigation Area of Ningxia [J]. Crops, 2022, 38(4): 32-36.
[15] Ma Yihu, He Xianbiao, Qi Wen, Wang Xuhui, Chen Jian, Zhou Cui, Zhang Zhongxi. Effects of Application of Agricultural Waste Materials and Reduction of Chemical Fertilizer on Grain Yield and Quality of Double Cropping Late Rice and Soil Fertility [J]. Crops, 2022, 38(3): 115-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!