Crops ›› 2023, Vol. 39 ›› Issue (5): 124-130.doi: 10.16035/j.issn.1001-7283.2023.05.018

Previous Articles     Next Articles

Analysis on the Effects of Precision Drill Sowing in Machine Transplanting for Single-Season Hybrid Rice to Improve Yield of Sparsely Planted Population

Fang Wenying1(), Zhu Defeng2(), Huai Yan3, Chen Jiaqi1, Chen Huizhe2, Wang Yaliang2()   

  1. 1Agro-Tech Extension and Service Center of Yuhang District, Hangzhou 310000, Zhejiang, China
    2China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
    3Zhejiang Agro-Tech Extension and Service Center, Hangzhou 310020, Zhejiang, China
  • Received:2022-04-10 Revised:2022-04-26 Online:2023-10-15 Published:2023-10-16

Abstract:

In order to clarify the effects of precision drill sowing in machine transplanting for single-season hybrid rice to improve yield of sparsely planted population, the indica/japonica hybrid rice ‘Yongyou 1540’ was used as the material, and two seeding rate treatments of standard 9-inch seedling tray (45.7g/tray, R1; 60.5g/tray, R2) and two machine transplanting specifications [30cm×21cm (D1); 30cm×18cm (D2)] were set to compare the tillering characteristics, dry matter accumulation and yield formation of rice population between precision drill sowing (PS) and traditional broadcast sowing (BS) in machine transplanting. The results showed that the increase of seeding rate in seedling tray reduced the dry matter accumulation and plumpness of rice seedling, PS treatment significantly improved the seedling quality. Compared with BS treatment, PS treatment significantly reduced the missing hill percent by 11.1 percentage point, meanwhile increased the percentage of hill of 2-3 seedlings transplanted by 109.7%. PS treatment increased the tillering rate and the number of tillers at tillering peak stage of rice population, especially under the low seeding rates, and the number of tillers at tillering peak stage and the productive tillers were higher in D2 compared to D1, and the number of peak tillering seedlings and productive tillers were the highest under R1D2PS. The dry matter accumulation of rice population presented as PS>BS, R1>R2, D2>D1 among the treatments, and the treatment of R1D2PS presented the highest dry matter accumulation. PS treatment enhanced the rice yield by increasing the number of productive panicles. Compared with BS treatment, PS treatment increased the rice yield by 13.8% in average. Increasing of planting density increased the number of productive tillers, but slightly decreased the number of spikelet per panicle. PSR1D2 presented the highest rice yield. In summary, precision drill sowing promoted the tiller occurrence, and increased the number of productive panicles and dry matter accumulation of sparsely planted population, and then increased the hybrid rice yield.

Key words: Indica-japonica hybrid rice, Machine transplanting, Precision drill sowing, Productive tiller formation, Dry matter accumulation

Fig.1

Schematic diagram of traditional broadcast sowing and precise drill sowing under different seeding rates"

Table 1

Effects of precision dill sowing on seedling quality"

秧盘播种量
Seeding rate
per tray
播种方式
Sowing
method
株高
Seedling
height (cm)
叶龄
Leaf
age
根长
Root length
(cm)
根数
The number
of roots
茎叶干重
Dry weight of stems
and leaves (mg)
根干重
Dry weight
of root (mg)
秧苗充实度
Seedling fullness
(mg/cm)
R1 BS 15.18±0.43 3.37±0.09 6.83±0.65 11.02±1.16 66.33±2.85 17.87±1.66 4.36±0.16
PS 15.02±0.09 3.33±0.09 9.44±0.49** 11.74±0.61 68.93±3.35 19.00±0.66 4.59±0.24
R2 BS 15.32±0.28 3.15±0.06 6.42±0.71 10.76±1.54 56.23±0.76 12.70±2.01 3.67±0.11
PS 15.46±0.38 3.12±0.03 7.44±0.23 9.93±0.80 66.40±1.87** 16.27±0.49** 4.30±0.20**
秧盘播种量Seeding rate per tray 0.01 29.35** 14.22** 2.69 4.36 8.80* 1.78
播种方式Sowing method 0.52 0.68 32.39** 0.01 46.28** 17.44** 13.68**
秧盘播种×播种方式
Seeding rate per tray×sowing method
1.41 0.01 6.16* 1.53 0.10 0.02 0.33

Fig.2

Effects of precision dill sowing on missing hill percent and percentage of 2~3 seedling per hill machine transplanted “**”indicats extremely significant difference at P < 0.01 level"

Fig.3

Effects of precision drill sowing on tillering dynamics of rice population under different seeding rate and machine planting density"

Fig.4

Effects of precision drill sowing on productive tiller percent of rice population under different seeding rate and machine planting density"

Table 2

Effects of precision drill sowing on dry matter accumulation of rice population under different seeding rate and machine planting density t/hm2"

秧盘播种量
Seeding rate
per tray
种植密度
Plant
density
播种方式
Sowing
method
分蘖高峰
Tillering peak
stage
穗分化期
Panicle initiation
stage
齐穗期
Heading
stage
成熟期
Maturing
stage
抽穗―成穗期
Heading-
maturing
R1 D1 BS 1.27±0.04 2.62±0.02 11.97±0.45 19.32±0.47 7.35±0.72
PS 1.74±0.06** 3.37±0.29** 16.37±0.38** 28.00±0.37** 11.63±0.13**
D2 BS 1.39±0.06 2.65±0.23 14.33±1.48 21.60±1.57 7.27±0.64
PS 2.01±0.11** 3.65±0.25** 18.47±1.31** 29.61±1.47** 11.14±2.65**
R2 D1 BS 1.36±0.05 2.57±0.09 14.00±0.16 21.62±1.39 7.62±1.25
PS 1.55±0.26 3.32±0.13** 15.22±0.34** 26.05±1.70** 10.83±1.68**
D2 BS 1.78±0.24 2.84±0.22 14.45±0.43 24.78±0.35 10.33±0.76
PS 1.67±0.14 3.30±0.29** 16.19±0.69** 28.30±0.41** 12.11±0.34**
秧盘播种量Seeding rate per tray 0.07 0.57 0.99 1.50 2.89
种植密度Plant density 16.13 2.61 20.57** 25.78** 2.71
播种方式Sowing method 25.02** 72.90** 78.65** 179.20** 39.23**
秧盘播种量×种植密度Seeding rate per tray×plant density 0.42 0.05 5.48* 0.63 4.63*
秧盘播种量×播种方式Seeding rate per tray×sowing method 19.04** 2.36 18.52** 22.42** 2.22
种植密度×播种方式Plant density×sowing method 0.43 0.02 0.04 0.71 0.73
秧盘播种量×种植密度×播种方式
Seeding rate per tray×plant density×sowing method
3.59 2.41 0.37 0.03 0.27

Table 3

Effects of precision drill sowing on dry matter translocation of rice population from heading to maturing under different seeding rate and machine planting density"

秧盘播种量
Seeding rate
per tray
种植密度
Plant
density
播种方式
Sowing
method
茎鞘和叶片的
干物质转运之和
Dry matter translocation of stem-
sheaths and leaves (t/hm2)
穗部干物质积累
Dry matter accumulation
in panicle (t/hm2)
穗部干物质转运贡献率
Contribution of dry
matter transportation
to panicle (%)
R1 D1 BS 2.32±0.19 9.01±0.33 25.70±1.42**
PS 1.48±0.22** 13.06±0.13** 11.32±1.59
D2 BS 2.51±0.34 9.78±0.68 25.71±3.33**
PS 2.90±0.25 15.00±0.08** 19.35±1.80
R2 D1 BS 1.54±0.30 9.44±1.19 16.40±2.96
PS 2.14±0.04** 13.18±1.77** 16.41±2.02
D2 BS 1.60±0.31 11.26±0.44 14.24±2.89
PS 1.62±0.34 13.43±0.75** 12.07±2.37
秧盘播种量Seeding rate per tray 27.95** 0.10 34.55**
种植密度Plant density 7.10* 11.77** 0.15
播种方式Sowing method 0.15 117.59** 34.33**
秧盘播种量×种植密度Seeding rate per tray×plant density 22.67** 0.21 13.85**
秧盘播种量×播种方式Seeding rate per tray×sowing method 5.95* 5.78* 22.65**
种植密度×播种方式Plant density×sowing method 2.24 0.08 2.23
秧盘播种量×种植密度×播种方式
Seeding rate per tray×plant density×sowing method
17.07** 3.82 6.81*

Table 4

Effects of precision drill sowing on yield formation under different seeding rate and machine planting density"

秧盘播种量
Seeding rate per tray
种植密度
Plant density
播种方式
Sowing method
有效穗数
The number of productive
tillers (×105/hm2)
穗粒数
The number of
spikelet per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
产量
Yield
(t/hm2)
R1 D1 BS 16.21±0.25 350.24±6.16 86.89±2.22 22.11±0.02 10.91±0.16
PS 20.00±0.26** 363.85±5.05 86.84±2.41 22.15±0.06 13.99±0.39**
D2 BS 16.90±0.40 354.56±10.00 86.60±2.89 22.69±0.32 11.78±0.82
PS 21.40±0.85** 352.80±11.19 86.86±0.42 21.89±0.28 14.34±0.12**
R2 D1 BS 17.13±0.40 349.46±2.35 86.91±0.09 22.69±0.35 12.11±0.86
PS 18.27±0.59** 358.06±6.68 87.05±3.07 22.00±0.40 12.55±1.04
D2 BS 17.07±0.38 358.90±5.78 86.24±3.57 22.90±0.32 11.81±0.39
PS 19.83±0.25** 346.70±3.33 86.33±3.54 22.20±0.23 13.18±0.58**
秧盘播种量Seeding rate per tray 8.44** 0.54 0.02 26.36** 1.81
种植密度Plant density 23.93** 5.92* 0.01 2.73 2.31
播种方式Sowing method 256.59** 0.53 0.01 131.37** 52.72**
秧盘播种量×种植密度
Seeding rate per tray×plant density
0.36 1.55 0.00 3.60 0.78
秧盘播种量×播种方式
Seeding rate per tray×sowing method
33.27** 1.87 0.00 10.31 13.92**
种植密度×播种方式Plant density×sowing method 8.44* 2.34 0.06 5.66 0.15
秧盘播种量×种植密度×播种方式
Seeding rate per tray×plant density×sowing method
1.07 1.41 0.16 43.17** 2.01*
[1] 霍中洋, 李杰, 许轲, 等. 高产栽培条件下种植方式对不同生育类型粳稻米质的影响. 中国农业科学, 2012, 45(19):3932-3945.
doi: 10.3864/j.issn.0578-1752.2012.19.004
[2] Huang M, Tang Q, Ao H, et al. Yield potential and stability in super hybrid rice and its production strategies. Journal of Integrative Agriculture, 2017, 16:1009-1017.
doi: 10.1016/S2095-3119(16)61535-6
[3] 彭少兵. 转型时期杂交水稻的困境与出路. 作物学报, 2016, 42(3):313-319.
[4] 何文洪, 陈惠哲, 朱德峰, 等. 不同播种量对水稻机插秧苗素质及产量的影响. 中国稻米, 2008(3):60-62.
[5] 邹应斌, 黄敏. 转型期作物生产发展的机遇与挑战. 作物学报, 2018, 44(6):791-795.
doi: 10.3724/SP.J.1006.2018.00791
[6] 王亚梁, 朱德峰, 向镜, 等. 杂交稻低播量精量播种育秧及机插取秧特性. 中国水稻科学, 2020, 34(4):332-338.
doi: 10.16819/j.1001-7216.2020.9113
[7] 李泽华, 马旭, 李宏伟, 等. 低播种量下杂交稻不同机械化种植方式的产量构成及特征. 华南农业大学学报, 2020, 41(4):22-29.
[8] 朱德泉, 储婷婷, 武立权, 等. 宽窄行配置对机插中晚稻生长特性及产量的影响. 农业工程学报, 2018, 34(18):102-112.
[9] 李应洪, 王海月, 吕腾飞, 等. 不同秧龄下机插方式与密度对杂交稻光合生产及产量的影响. 中国水稻科学, 2017, 31(3):265-277.
doi: 10.16819/j.1001-7216.2017.6091 265
[10] 王亚梁, 朱德峰, 张玉屏, 等. 连作杂交晚稻精准条播长秧龄机插的生长及产量特性分析. 作物学报, 2022, 48(1):215-225.
doi: 10.3724/SP.J.1006.2022.02091
[11] 李泽华, 马旭, 陈林涛, 等. 育秧播种密度与取秧面积耦合对杂交稻机插质量和产量的影响. 农业工程学报, 2019, 35(24):20-30.
[12] 潘圣刚, 吴颖仪, 肖瑶, 等. 抑制无效分蘖对水稻产量和非结构性碳水化合物的影响. 湖南农业大学学报(自然科学版), 2015, 41(3):229-233.
[13] 吕伟生, 曾勇军, 石庆华, 等. 基于机插晚稻分蘖成穗特性获取基本苗定量参数. 农业工程学报, 2016, 32(1):30-37.
[14] 杨祥田, 何贤彪, 王旭辉, 等. 水稻机插缺丛条件下自然补偿能力研究. 中国农业通报, 2014, 30(21):70-74.
[15] 韦还和, 张徐彬, 葛佳琳, 等. 甬优籼粳杂交稻栽后地上部干物质积累动态与特征分析. 作物学报, 2021, 47(3):546-555.
doi: 10.3724/SP.J.1006.2021.02033
[1] Luo Siwei, Shi Xiunan, Jia Yonghong, Zhang Jinshan, Wang Kai, Li Dandan, Wang Runqi, Dong Yanxue, Shi Shubing. Effects of Drip Irrigation Capillary Spacing and Drop Spacing on Photosynthesis, Dry matter Accumulation, and Yield Formation of Uniformly Sown Winter Wheat [J]. Crops, 2023, 39(3): 230-237.
[2] Li Wenshan, Zhang Junyao, Tang Jianghua, Xu Wenxiu, Xu Qinghua. Effects of Different Doses of AFD on Growth and Yield of Cotton [J]. Crops, 2023, 39(1): 158-162.
[3] Li Yanlu, Wang Junpeng, Yu Xinzhi, Wei Honglei, Chen Qiyu, Zhao Hongxiang, Xu Chen, Bian Shaofeng, Zhang Zhian. Effects of Mulching Different Plastic Films on Accumulation and Distribution of Dry Matter and Nitrogen in Maize in Cold and Cool Areas [J]. Crops, 2022, 38(5): 124-129.
[4] Sun Yunchao, Peng Keyan, Feng Shengye, Ji Chuanyun, Lü peng, Ju Zhengchun. Effects of Row Spacing and Seedling Belt Width on Dry Matter Accumulation and Distribution of Wheat in Wide Refined Sowing [J]. Crops, 2022, 38(5): 130-134.
[5] Li Rui, Dong Liqiang, Shang Wenqi, Yu Guangxing, Dai Guijin, Wang Zheng, Li Yuedong. Effects of Water Spraying Interval at Seedling Stage on Growth and Yield of Rice [J]. Crops, 2022, 38(5): 249-254.
[6] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[7] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[8] Meng Fan, Luo Jianxin, Cai Ye, Yu Ying, Yang Lei, Zhou Wanchun. Effects of Soil Available Phosphorus on Tobacco Growth and Dry Matter Accumulation and Distribution [J]. Crops, 2022, 38(2): 203-210.
[9] Xie Huimin, Wu Ke, Liu Wenqi, Wei Guoliang, Lu Xian, Li Zhuanglin, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Partial Substitution of Seaweed Fertilizers and Microbial Inoculant for Chemical Fertilizer on Rice Yield and Its Components [J]. Crops, 2022, 38(1): 161-166.
[10] Chen Zhongcheng, Jin Xijun, Li He, Zhou Weixin, Qiang Binbin, Liu Jia, Zhang Yuxian. Effects of Exogenous Melatonin on Growth, Photosynthetic Fluorescence Characteristics and Yield Components of Adzuki Bean [J]. Crops, 2021, 37(6): 88-94.
[11] Gao Jie, Li Xiaorong, Feng Guangcai, Li Qingfeng, Peng Qiu. Difference Analysis of Dry Matter and Nitrogen Accumulation and Translocation of Waxy Sorghum Applied in Different Eras in Guizhou Province [J]. Crops, 2021, 37(5): 50-56.
[12] Gao Jie, Feng Guangcai, Li Xiaorong, Li Qingfeng, Wang Can, Zhang Guobing, Zhou Lengbo, Peng Qiu. Effects of Nitrogen Fertilizer on Yield and Nitrogen Use Characteristics in Waxy Sorghum Cultivar "Hongyingzi" [J]. Crops, 2021, 37(4): 118-122.
[13] Liu Tianhao, Zhang Yifei, Wang Huaipeng, Yang Kejun, Zhang Jinsong, Sun Yishan, Xiao Shanshan, Xu Rongqiong, Du Jiarui, Li Jiayu, Peng Cheng, Wang Baosheng. Regulating Effects of Foliar Spraying Silicon Fertilizer on Dry Matter Accumulation and Translocation, Grain Yield and Quality of Maize in Cold Region [J]. Crops, 2021, 37(4): 112-117.
[14] Chen Chengli, Wang Jing, Fu Quanshan, Hou Zhenwu, Jiang Weifeng, Li Liping, Guo Shuyang, Rao Chaoqi, Fu Yunpeng. Effects of Transplanting Dates and Mulching Methods on Dry Matter Accumulation and Economic Characteristics of Dark Sun-Cured Tobacco in Jiaohe [J]. Crops, 2021, 37(3): 126-132.
[15] Ren Yun, Liu Jing, Li Zhexin, Li Qiang. Root Morphology and Dry Matter Accumulation of Maize Seedlings in Response to Low Iron Stress [J]. Crops, 2020, 36(6): 69-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!