Crops ›› 2024, Vol. 40 ›› Issue (1): 204-213.doi: 10.16035/j.issn.1001-7283.2024.01.027

Previous Articles     Next Articles

Effects of Bacillus vallismortis and Straw Replacing Phosphorus Fertilizer on Growth, Yield and Quality of Tartary Buckwheat

Hao Yani1(), Pei Hongbin2,3(), Gao Zhenfeng4, Zhang Yijun3, Yang Zhenping1   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2College of Modern Arts and Sciences, Shanxi Normal University, Linfen 041004, Shanxi, China
    3College of Life Sciences, Shanxi Normal University, Taiyuan 030031, Shanxi, China
    4Agricultural Products Storage and Preservation Research Institute, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Taiyuan 030031, Shanxi, China
  • Received:2022-09-27 Revised:2023-02-07 Online:2024-02-15 Published:2024-02-20
  • Contact: Pei Hongbin E-mail:hyni0120@126.com;bbpei65110@163.com

Abstract:

In order to achieve low-phosphorus cultivation of Tartary buckwheat, pot experiments were conducted using the Tartary buckwheat variety ?Jinqiao 6? as the test material, the combination treatments of straw [0 g/kg soil (J0), 4 g/kg soil (J1)] and Bacillus vallismortis gz4-1, bacterial liquid concentration [0 (P0), 104 (P1), 106 (P2), 108 (P3), 1010 (P4) cfu/mL] were set. Using normal fertilization as control (CK) to determine the effects of combined application of organophorus degrading bacteria B.vallismortis gz4-1 and straw on the growth, yield and quality of Tartary buckwheat. The results showed that compared with no straw application, B.vallismortis gz4-1-straw could significantly improve the root mass, main root length, total root length and yield of Tartary buckwheat, and showed a trend of increasing first and then decreasing with the increase of bacterial solution concentration. In the combined treatment of B.vallismortis gz4-1-straw, the bacterial liquid concentration of P2 and P3 had the best effects, and the root surface area, root volume, stem diameter, root activity, acid phosphatase activity and the number of ears of Tartary buckwheat reached the optimal growth value under the P2 treatment. However, the root fresh weight, dry weight, main root length, total root length, plant height, stem and leaf fresh weight, dry weight, leaf area, grain weight per plant, 1000-grain weight, yield and flavonoids content of Tartary buckwheat reached the optimal growth value under P3 treatment. In addition, compared with CK, the replacement of P fertilizer by B.vallismortis gz4-1 and straw could promote the production of Tartary buckwheat and significantly increase the yield of Tartary buckwheat when the concentration of B.vallismortis gz4-1 were the concentrations of P2 and P3. Therefore, it was recommended that the optimal concentration of B.vallismortis gz4-1 in the combined treatment of B.vallismortis gz4-1-straw were 106-108 cfu/mL.

Key words: Tartary buckwheat, Organophosphate degrading bacteria, Phosphate substitute, Straw, Phosphorus absorption

Table 1

Changes of root morphological indexes of Tartary buckwheat at flowering stage by B.vallismortis gz4-1 and straw instead of phosphate fertilizer"

处理
Treatment
鲜重
Fresh weight (g)
干重
Dry weight (g)
主根长
Main root length (cm)
总根长
Total root length (cm)
根系表面积
Root surface area (cm2)
根系体积
Root volume (cm3)
CK 2.45±0.21b 0.25±0.06bc 29.47±0.92cd 709.8±43.3ab 42.10±3.93ab 5.66±1.29abc
J0 P0 1.64±0.24de 0.15±0.01d 20.07±1.14ef 395.7±50.5d 23.70±2.80c 2.51±0.44c
P1 1.20±0.08f 0.16±0.02d 16.37±0.92f 543.9±54.6c 29.34±2.98bc 3.52±0.57bc
P2 2.16±0.16bc 0.16±0.03d 36.30±0.32b 696.3±83.6ab 45.03±12.64ab 6.58±2.68ab
P3 2.07±0.20bc 0.26±0.06bc 36.10±2.17b 424.6±31.5d 22.92±1.70c 2.38±0.11c
P4 0.98±0.17e 0.12±0.02d 26.00±0.42e 394.1±82.3c 22.79±4.88c 2.03±0.57c
J1 P0 1.07±0.47e 0.28±0.13bc 30.53±0.90cd 461.2±105.2d 22.11±3.39c 1.68±0.26c
P1 2.58±0.54b 0.37±0.02ab 31.07±1.57cd 512.7±77.5c 24.80±3.44c 1.97±0.28c
P2 2.53±0.14b 0.39±0.02ab 37.63±2.69b 830.8±46.7a 48.99±5.48a 7.64±2.28a
P3 3.33±0.42a 0.47±0.05a 54.90±6.41a 562.1±98.9c 30.39±4.79bc 3.37±0.84bc
P4 1.83±0.50d 0.35±0.11ab 31.60±0.66cd 598.3±62.4c 31.23±0.31bc 3.69±0.76bc

Fig.1

Changes of root activity indexes of Tartary buckwheat at flowering stage by B.vallismortis gz4-1 and straw instead of phosphate fertilizer Different lowercase letters indicate significant differences between treatments (P < 0.05), the same below."

Table 2

Changes of stem and leaf morphological indexes of Tartary buckwheat at flowering stage by B.vallismortis gz4-1 and straw instead of phosphate fertilizer"

处理
Treatment
茎粗
Stem diameter (mm)
株高
Plant height (cm)
鲜重(g/株)
Fresh weight (g/plant)
干重(g/株)
Dry weight (g/plant)
叶面积
Leaf area (cm2)
花序数
Flower ordinal number
CK 5.06±0.30ab 69.77±0.76cd 25.67±1.70b 2.34±0.47bc 30.99±2.76de 11.00±0.88bcd
J0 P0 3.23±0.03e 53.93±1.51f 12.53±0.09d 1.48±0.07de 20.75±19.06f 8.00±0.58e
P1 3.85±0.39cde 60.60±1.25ef 16.40±1.15cd 1.83±0.21cde 27.69±2.82ef 9.00±0.38de
P2 5.03±0.15ab 66.43±3.02de 25.07±1.58b 2.80±0.21b 38.42±0.88c 10.00±1.20cde
P3 4.33±0.34cd 74.13±1.23bc 24.70±1.62b 2.54±0.23bc 37.67±1.01c 12.00±0.88abc
P4 3.59±0.14de 60.67±1.89ef 13.83±1.48d 1.47±0.07de 29.86±1.38e 9.00±0.33de
J1 P0 4.57±0.02bc 60.87±1.79ef 12.49±0.34d 1.11±0.14e 28.97±1.67e 9.00±0.58de
P1 4.83±0.13b 67.10±1.10de 15.05±1.13cd 1.78±0.12cde 30.35±1.84de 9.00±0.33de
P2 5.81±0.40a 77.33±3.53ab 25.75±1.11b 2.29±0.11bc 50.31±4.32b 13.00±0.33ab
P3 4.88±0.42b 83.27±4.29a 32.05±2.46a 4.27±0.47a 58.36±2.36a 13.00±0.57a
P4 4.87±0.09b 65.30±0.55de 19.16±2.33c 2.11±0.17bcd 45.91±1.68b 9.00±0.88de

Fig.2

Changes of acid phosphatase activity indexes of Tartary buckwheat at flowering stage by B.vallismortis gz4-1 and straw instead of phosphate fertilizer"

Fig.3

Changes of chlorophyll content indexes of Tartary buckwheat at flowering stage by B.vallismortis gz4-1 and straw instead of phosphate fertilizer"

Table 3

Changes of physical and chemical properties indexes of Tartary buckwheat soil by B.vallismortis gz4-1 and straw instead of phosphate fertilizer"

处理Treatment pH 有机质Organic matter (g/kg) 速效磷Available phosphorus (mg/kg) 速效钾Available potassium (mg/kg)
Natural soil生土 8.44±0.03a 20.63±1.15a 10.55±1.08b 111.40±0.18i
CK 8.08±0.02b 5.15±0.01d 14.06±0.40a 149.83±0.99f
J0 P0 8.07±0.03b 7.71±0.03b 5.93±0.13de 121.50±0.64h
P1 8.02±0.02bc 7.20±0.07b 5.82±0.68de 142.40±1.07g
P2 8.01±0.00bc 5.01±0.01d 4.80±0.20e 217.13±2.23c
P3 8.01±0.02bcd 5.15±0.01d 5.62±0.08de 123.53±1.59h
P4 7.96±0.04cde 6.07±0.04cd 6.38±0.18d 123.43±1.07h
J1 P0 7.95±0.02cde 7.54±0.18b 4.73±0.10e 252.57±1.56a
P1 7.98±0.00cde 5.84±0.05cd 5.39±0.07de 239.73±3.55b
P2 7.93±0.04def 6.63±0.07bc 5.27±0.21de 157.33±0.96e
P3 7.90±0.00ef 5.52±0.16d 5.04±0.04de 166.20±0.51d
P4 7.86±0.04f 6.86±0.01bc 8.82±0.15c 163.33±1.63d

Table 4

Changes of yield and component factors of Tartary buckwheat at mature period by B.vallismortis gz4-1 and straw instead of phosphate fertilizer"

处理
Treatment
单株粒重
Grain weight per plant (g)
千粒重
1000-kernel weight (g)
单株果穗数
Number of ears per plant
产量(g/盆)
Yield (g/pot)
CK 2.69±0.07b 14.38±0.96abc 14.67±0.88b 13.90±0.75d
J0 P0 0.89±0.04g 10.65±0.14d 6.00±0.58e 7.54±0.12g
P1 1.26±0.12f 12.32±0.32cd 9.67±0.33cd 10.58±0.38f
P2 1.90±0.04d 13.43±0.54bc 11.00±0.58c 15.88±0.22c
P3 1.73±0.08de 14.27±0.78abc 10.67±0.67c 12.60±0.17de
P4 1.54±0.05e 12.66±0.83cd 6.67±0.67e 12.28±0.16de
J1 P0 1.73±0.08de 11.10±0.38d 7.67±0.33de 12.07±0.20ef
P1 1.75±0.06de 12.23±0.40cd 10.67±1.45c 13.43±0.36de
P2 2.36±0.03c 15.53±1.35ab 16.33±0.33a 18.37±1.07a
P3 3.01±0.13a 15.99±0.43a 14.67±0.88b 16.81±0.94b
P4 2.35±0.07c 13.46±0.40bc 11.33±1.20c 13.39±0.13de

Fig.4

Changes of soluble protein contents of Tartary buckwheat grains at mature period by B.vallismortis gz4-1 and straw instead of phosphate fertilizer"

Fig.5

Changes of flavonoids contents of Tartary buckwheat grains at mature period by B.vallismortis gz4-1 and straw instead of phosphate fertilizer"

Fig.6

Correlation analysis of grain quality and plant indexes of Tartary buckwheat substituted for phosphate fertilizer by B.vallismortis gz4-1 and straw"

[1] Ogbo F C. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresource Technology, 2010, 101(11):4120-4124.
doi: 10.1016/j.biortech.2009.12.057 pmid: 20138509
[2] Gyaneshwar P, Kumar G N, Parekh L J, et al. Role of soil microorganisms in improving P nutrition of plants. System Sciences and Comprehensive Studies in Agriculture, 2002, 245 (1):133-143.
[3] 徐凤花, 刘永春. 秸杆还田的增磷作用及对植株全磷含量干物质积累的影响. 黑龙江八一农垦大学学报, 1997(3):1-5.
[4] Mohammadi G. Phosphate biofertilizers as renewable and safe nutrient suppliers for cropping systems: A Review// Kumar V,Kumar M,Sharma S,et al. Probiotics and Plant Health. Springer Singapore, 2017:113-130.
[5] Raghuwanshi R. Opportunities and challenges to sustainable agriculture in India. NEBIO, 2012, 3:78-86.
[6] Khan K S, Joergensen R G. Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresource Technology, 2009, 100(1):303-309.
doi: 10.1016/j.biortech.2008.06.002 pmid: 18632264
[7] Natalie B, Widyasmara A, Arifin M, et al. Isolation and screening of phosphate solubilizing bacteria from rhizosphere of tea (Camellia sinensis L.) on andisols. International Journal, 2017, 4(4):95-100.
[8] Yu X, Liu X, Zhu T H, et al. Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biology and Fertility of Soils, 2011, 47(4):437-446.
doi: 10.1007/s00374-011-0548-2
[9] Ghosh U, Subhashini P, Dilipan E, et al. Isolation and characterization of phosphate-solubilizing bacteria from seagrass rhizosphere soil. Journal of Ocean University of China, 2012, 11(1):86-92.
doi: 10.1007/s11802-012-1844-7
[10] Hansen V, Bonnichsen L, Nunes I, et al. Seed inoculation with Penicillium bilaiae and Bacillus simplex affects the nutrient status of winter wheat. Biology and Fertility of Soils, 2020, 56(1):97-109.
doi: 10.1007/s00374-019-01401-7
[11] Ahmad D A, Bhat A K. Genotypic characterization and efficacy of phosphate solubilising bacteria in improving the crop yield of Zea mays. Forests, 2019, 14:34-39.
doi: 10.3390/f14010034
[12] Prasad M, Dawson J, Yadav R S. Effect of different nitrogen sources and phosphate solubilizing bacteria on growth and yield of grain cowpea [Vigna unguiculata (L.) Walp.]. Crop Research, 2012, 44(1/2):59-62.
[13] Yan H L, Liu C Y, Zhao J L, et al. Genome-wide analysis of the NF-Y gene family and their roles in relation to fruit development in Tartary buckwheat (Fagopyrum tataricum). International Journal of Biological Macromolecules, 2021, 1(190):487-498.
[14] Liu C, Ye X, Zou L, et al. Genome-wide identification of genes involved in heterotrimeric G-protein signaling in Tartary buckwheat (Fagopyrum tataricum) and their potential roles in regulating fruit development-ScienceDirect. International Journal of Biological Macromolecules, 2021, 171:435-447.
doi: 10.1016/j.ijbiomac.2021.01.016 pmid: 33434548
[15] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导(第4版). 北京: 高等教育出版社, 2009.
[16] 孙海国, 张福锁. 缺磷条件下的小麦根系酸性磷酸酶活性研究. 应用生态学报, 2002, 13(3):379-381.
[17] 刘三才, 李为喜, 刘方, 等. 苦荞麦种质资源总黄酮和蛋白质含量的测定与评价. 植物遗传资源学报, 2007, 8(3):317-320.
[18] 张琪, 刘慧灵, 朱瑞, 等. 苦荞麦中总黄酮和芦丁的含量测定方法的研究. 食品科学, 2003, 24(7):113-116.
[19] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000.
[20] 刘新亮, 李彦, 戴小英, 等. 配方施肥对芳樟幼林生长及叶精油含量的影响. 南方林业科学, 2019, 47(6):7-10,63.
[21] Singh G T, Erik N N. Rhizosphere research:a tool for treating phosphorus efficient crop varieties. WCSS, 2002, 1270(64):1-15.
[22] Zhu J, Zhang C, Lynch J P. The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Functional Plant Biology, 2010, 37(4):313-322.
doi: 10.1071/FP09197
[23] Linkohr B I, Williamson L C, Fitter A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal, 2002, 29:751-760.
doi: 10.1046/j.1365-313X.2002.01251.x
[24] Misson J, Raghothama K, Jain A, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33):11934-11939.
[25] Schachtman D P, Shin R. Nutrient sensing and signaling: NPKS. Annual Review of Plant Biology, 2007, 58(1):47-69.
doi: 10.1146/arplant.2007.58.issue-1
[26] 杨春婷, 张永清, 董璐, 等. 不同基因型苦荞幼苗对低磷胁迫的响应. 植物科学学报, 2018, 36(6):859-867.
[27] Nadira U A, Ahmed I M, Zeng J, et al. The changes in physiological and biochemical traits of Tibetan wild and cultivated barley in response to low phosphorus stress. Soil Science and Plant Nutrition, 2014, 60(6):832-842.
doi: 10.1080/00380768.2014.949853
[28] Gaume A, Machler F, León C D, et al. Low-P tolerance by maize (Zea mays L.) genotypes:Significance of root growth and organic acids and acid phosphatase root exudation. Plant Soil, 2001, 228:253-264.
doi: 10.1023/A:1004824019289
[29] 李娟, 王文丽, 卢秉林. 解磷微生物菌剂对油菜生长及产量的影响. 中国土壤与肥料, 2010(3):67-69.
[30] 吕丽华, 姚海坡, 申海平, 等. 不同肥料种类对小麦产量和土壤肥力的影响. 河北农业科学, 2016, 20(2):34-39.
[31] 冯瑞章, 姚拓, 周万海, 等. 溶磷菌对燕麦生物量及植株氮、磷含量的影响. 水土保持学报, 2009, 23(2):188-192.
[32] 余旋, 朱天辉, 刘旭, 等. 不同解磷菌剂对美国山核桃苗生长、光合特性及磷素营养的影响. 果树学报, 2010, 27(5):725-729.
[33] 徐国伟, 李帅, 赵永芳, 等. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究. 草业学报, 2014, 23(2):140-146.
doi: 10.11686/cyxb20140217
[34] 王明达. 秸秆还田方式与化肥配施对玉米生长及土壤养分的影响. 沈阳:沈阳农业大学, 2017.
[35] 董祥洲, 陈亚奎, 任立伟, 等. 微生物转化在秸秆还田中的应用进展. 生物加工过程, 2020, 18(5):604-611.
[36] 何艳, 严田蓉, 郭长春, 等. 秸秆还田与栽插方式对水稻根系生长及产量的影响. 农业工程学报, 2019, 35(7):105-114.
[37] 赵小蓉, 周然, 李贵桐, 等. 低磷石灰性土壤加入四种作物秸秆土壤微生物量磷的变化特征. 华北农学报, 2010, 25(3):200-204.
[38] 徐强. 不同时期缺磷、供磷对小麦产量形成和器官建成的影响. 山东农业科学, 1987(2):14-18.
[39] Cox M C, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation and translocation in wheat. II. Nitrogen assimilation in relation to grain yield and protein1. Crop Science, 1985, 25(3):430-431.
doi: 10.2135/cropsci1985.0011183X002500030002x
[40] Maarastawi S A, Frindte K, Bodelier P, et al. Rice straw serves as additional carbon source for rhizosphere microorganisms and reduces root exudate consumption. Soil Biology and Biochemistry, 2019, 135:235-238.
doi: 10.1016/j.soilbio.2019.05.007
[41] 黄新灿, 章明奎. 蔬菜种植模式对涂地土壤性状及蔬菜连作障碍的影响. 中国农学通报, 2016, 32(22):151-157.
doi: 10.11924/j.issn.1000-6850.casb15120035
[42] 郜春花, 卢朝东, 张强. 解磷菌剂对作物生长和土壤磷素的影响. 水土保持学报, 2006, 20(4):54-56.
[1] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[2] Liu Hongjie, Ren Dechao, Ni Yongjing, Ge Jun, Zhang Suyu, Lü Guohua, Hu Xin. Effects of Straw Returning and Reducing Nitrogen Application on Soil Nutrients, Enzyme Activities and Wheat Yield [J]. Crops, 2023, 39(4): 210-214.
[3] Chen Yuanyuan, Li Guangsheng, Liu Yang, He Yuqi, Zhou Meiliang, Fang Zhengwu. Molecular Cloning and Functional Identification of Resistance Gene FtTIR of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(4): 44-51.
[4] Bai Kaihong, Abie Xiaobing, Xu Xiaoli, Jiang Na, Li Jianqiang, Luo Laixin. Analysis of Fungal Diversity in Seeds of Tartary Buckwheat from Liangshan, Sichuan Province [J]. Crops, 2023, 39(3): 260-266.
[5] Li Guangsheng, Lu Xiang, Lai Dili, Zhang Kaixuan, Wang Haihua, Zhou Meiliang. Molecular Cloning and Functional Analysis of Resistance Gene FtABCG12 of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(3): 43-50.
[6] Wei Yunfei, Li Meng, Ji Xin, Liu Juan, Wang Fujuan, Liu Qiuyuan. Effects of Different Tillage and Sowing Methods on the Growth and Yield of Direct-Seeding Rice under Full Returning of Straw [J]. Crops, 2023, 39(3): 94-100.
[7] Wang Zheng, Xu Tianyang, Liu Jiuyu, Peng Bo, Xu Maohua, Li Bo, Ao Jincheng, Long Wei. Study on the Effects of Application Straw Combined with Compound Bacteria Agent in Red Soil Sloping Farmland in Yunnan [J]. Crops, 2023, 39(1): 89-95.
[8] Qin Meng, Cui Shize, He Xiaodong, Zhai Lingxia, Tao Bo, Wang Zhaojun, Zhao Haicheng, Li Hongyu, Zheng Guiping, Liu Lihua. Effects of Straw Puffing Returning on Rice Yield, Quality and Soil Nutrients [J]. Crops, 2022, 38(6): 159-166.
[9] Zhang Mingfa, Zhang Sheng, Teng Kai, Chen Qianfeng, Tian Minghui, Jiang Zhimin, Chao Jin, Jian Panfeng, Deng Xiaohua. Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan [J]. Crops, 2022, 38(6): 193-200.
[10] Wang Junzhen, Zhou Meiliang, Li Faliang, Zhang Kaixuan, Zhu Jianfeng, Shen A’yi, Luogu Youfu, Yao Juhong, Yin Yuanjie, Wu Dongming, Zhang Jie. Breeding and Cultivation Technology of New Tartary Buckwheat Variety “Chuanqiao 6” [J]. Crops, 2022, 38(6): 241-244.
[11] Tang Jianghua, Du Xiaojing, Xu Wenxiu, Su Lili, Fang Yanfei, Xu Chao, An Chongxiao. Effects of Tillage Measures on Soil Nitrogen Characteristics under Total Straw Returning [J]. Crops, 2022, 38(5): 135-140.
[12] Ge Changbin, Qin Suyan, Huang Jie, Cao Yanyan, Liao Pingʼan. Effects of Tillage Methods on Fusarium Head Blight and Yield of Wheat [J]. Crops, 2022, 38(5): 235-240.
[13] Shi Xian, Li Hongyou, Lu Bingyue, Zhou Yun, Zhao Jiju, Zhao Mengli, Liang Jing, Meng Hengling. Physiological Responses of Three Tartary Buckwheat Varieties to Salt Stress and Evaluation of Salt Tolerance [J]. Crops, 2022, 38(3): 149-154.
[14] Guo Shuya, Shang Shang, Wang Kun, Fu Guozhan, Lu Guangyuan. Effects of Straw Mulching and Subsoiling on Soil Organic Carbon Pool in Summer Maize Field [J]. Crops, 2022, 38(2): 113-118.
[15] Wei Xingdi, Zuo Xiangbing, Tian Weirong, Pei Chengjiang, Zhang Mingjun, Lu Min. Investigation on Main Crops and Their By-Products in Guizhou and the Evaluation of Feeding Value [J]. Crops, 2022, 38(2): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!