Crops ›› 2024, Vol. 40 ›› Issue (1): 80-89.doi: 10.16035/j.issn.1001-7283.2024.01.011
Previous Articles Next Articles
Wu Ying1,2(), Hu Die1,2, Li Ting1,2, Duan Qianyuan1, Wei Ningning1,2, Zhang Xinghua1,2, Xu Shutu1,2, Xue Jiquan1,2()
[1] | 刘亮, 陈美娟, 范婷婷. 农业气象灾害对玉米产量的影响. 新农业, 2022(6):10-11. |
[2] | 孙琦. 我国不同年代主推玉米品种耐旱抗病性的变化趋势. 北京: 中国农业科学院, 2012. |
[3] |
Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2):313-324.
doi: 10.1016/j.cell.2016.08.029 |
[4] |
Tran L, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004, 16(9):2481-2498.
doi: 10.1105/tpc.104.022699 |
[5] |
Leng P F, Zhao J. Transcription factors as molecular switches to regulate drought adaptation in maize. Theoretical and Applied Genetics, 2020, 133(3):1455-1465.
doi: 10.1007/s00122-019-03494-y |
[6] |
Cai R H, Zhao Y, Wang Y F, et al. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue and Organ Culture, 2015, 119(3):565-577.
doi: 10.1007/s11240-014-0556-7 |
[7] |
Mao H D, Yu L J, Han R, et al. ZmNAC55,a maize stress- responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2016, 105:55-66.
doi: 10.1016/j.plaphy.2016.04.018 |
[8] |
Ma H Z, Liu C, Li Z X, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiology, 2018, 178(2):753-770.
doi: 10.1104/pp.18.00436 |
[9] |
Mangelsen E, Kilian J, Berendzen K W, et al. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 2008, 9(1):1-17.
doi: 10.1186/1471-2164-9-1 |
[10] |
Hu W J, Ren Q Y, Chen Y L, et al. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses. BMC Plant Biology, 2021, 21(1):1-21.
doi: 10.1186/s12870-020-02777-7 |
[11] | Yang Z, Chi X Y, Guo F F, et al. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress- responsive gene, SbRD19, in sorghum. Journal of Plant Physiology, 2020, 153142:246-247. |
[12] |
Ren X Z, Chen Z Z, Liu Y, et al. ABO3,a WRKY transcription factor,mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. The Plant Journal, 2010, 63(3):417-429.
doi: 10.1111/tpj.2010.63.issue-3 |
[13] | 徐金鹏, 祁亚男, 于延冲. 盐、干旱胁迫对拟南芥WRKY71基因突变体种子萌发的影响. 山东农业科学, 2020, 52(3):34-37. |
[14] |
Wu H L, Ni Z F, Yao Y Y, et al. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Progress in Natural Science, 2008, 18(6):697-705.
doi: 10.1016/j.pnsc.2007.12.006 |
[15] | 郭玉敏, 张云华. 玉米ZmWRKY53基因克隆及诱导表达分析. 分子植物育种, 2020, 18(3):719-728. |
[16] | 郭玉敏, 张云华, 井涛, 等. 过表达玉米转录因子ZmWRKY101基因提高拟南芥植株的耐盐力. 植物生理学报, 2020, 25(9):1921-1932. |
[17] | Alzohairy A M. BioEdit: an important software for molecular biology. Gerf Bulletin of Biosciences, 2011, 2(1):60-61. |
[18] |
Hall B G. Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 2013, 30(5):1229-1235.
doi: 10.1093/molbev/mst012 pmid: 23486614 |
[19] |
Chen C J, Chen H, Zhang Y, et al. Tbtools:an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[20] | Jensen L J, Michael K, Manuel S, et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 2009, 37(1):412-416. |
[21] | Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1):361-362. |
[22] |
Miao Z Y, Han Z X, Zhang T, et al. A systems approach to a spatio-temporal understanding of the drought stress response in maize. Scientific Reports, 2017, 7(1):6590.
doi: 10.1038/s41598-017-06929-y pmid: 28747711 |
[23] |
Liu Y, Zhou M Y, Gao Z X, et al. RNA-Seq analysis reveals MAPKKK family members related to drought tolerance in maize. PLoS ONE, 2015, 10(11):e0143128.
doi: 10.1371/journal.pone.0143128 |
[24] |
Yang M, Geng M Y, Shen P F, et al. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.). Plant Physiology and Biochemistry, 2019, 135:304-309.
doi: 10.1016/j.plaphy.2018.12.025 |
[25] |
Zhang H M, Zhu J H, Gong Z Z, et al. Abiotic stress responses in plants. Nature Reviews Genetics, 2021, 23(2):104-119.
doi: 10.1038/s41576-021-00413-0 pmid: 34561623 |
[26] |
Qiu Y P, Yu D Q. Overexpression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany, 2009, 65 (1):35-47.
doi: 10.1016/j.envexpbot.2008.07.002 |
[27] |
Wang C T, Ru J N, Liu Y W, et al. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. International Journal of Molecular Sciences, 2018, 19(10):3046.
doi: 10.3390/ijms19103046 |
[28] | 李建萍.玉米转录因子ZmWRKY25的克隆及其抗逆功能分析. 长春:吉林大学, 2012. |
[29] |
Jiang Y J, Gang L, Yu D Q. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant, 2012, 5(6):1375-1388.
doi: 10.1093/mp/sss080 |
[30] | 蔡荣号.玉米WRKY转录因子IId亚族抗逆相关基因的鉴定及ZmWRKY17的功能分析. 合肥:安徽农业大学, 2016. |
[31] |
Zhang T, Tan D F, Zhang L, et al. Phylogenetic analysis and drought-responsive expression profiles of the WRKY transcription factor family in maize. Agri Gene, 2017, 3:99-108.
doi: 10.1016/j.aggene.2017.01.001 |
[32] |
Alan L, Austen B, Lyndsey A, et al. Advances in the MYB- bHLH-WD Repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant and Cell Physiology, 2017, 58(9):1431-1441.
doi: 10.1093/pcp/pcx075 |
[33] |
Amato A, Cavallini E, Walker A R, et al. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. The Plant Journal, 2019, 99(6):1220-1241.
doi: 10.1111/tpj.14419 pmid: 31125454 |
[34] |
Zhao M Z, Morohashi K, Hatlestad G, et al. The TTG1-bHLH- MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development, 2008, 135(11):1991-1999.
doi: 10.1242/dev.016873 |
[35] |
Verweij W, Spelt C E, Bliek M, et al. Functionally similar WRKY proteins regulate vacuolar acidification in petunia and hair development in Arabidopsis. The Plant Cell, 2016, 28(3):786-803.
doi: 10.1105/tpc.15.00608 pmid: 26977085 |
[1] | Feng Yong, Hou Xuguang, Xue Chunlei, Zhang Laihou, Song Guodong, Su Minli, Fu Xiaohua, Sun Yuyan. Division of Suitable Ecological Regions of Maize Varieties in Inner Mongolia [J]. Crops, 2024, 40(1): 23-30. |
[2] | Wang Haitao, Ren Chunmei, Dong Yan, Li Shuo, Cheng Zhaobang, Ji Yinghua. Molecular Detection and Identification of Maize Yellow Mosaic Virus on Sorghum in Huai’an, Jiangsu [J]. Crops, 2024, 40(1): 233-238. |
[3] | Ma Juan, Huang Lu, Yu Ting, Guo Guojun, Zhu Weihong, Liu Jingbao. Multi-Locus Genome-Wide Association Study and Genomic Prediction for General Combining Ability of Maize Ear Diameter [J]. Crops, 2024, 40(1): 31-39. |
[4] | Jin Yu, Guo Xinyu, Zhang Ying, Li Dazhuang, Wang Jinglu. Stomatal Phenotypic Identification and Research Progress in Maize Leaves [J]. Crops, 2023, 39(6): 1-10. |
[5] | Wu Qi, Ming Bo, Gao Shang, Yang Hongye, Zhang Chuan, Chu Zhendong, Li Shaokun. Research on the Construction Strategy of Maize Grain Dehydration Model in Cold Northeast China [J]. Crops, 2023, 39(6): 108-113. |
[6] | Bai Jinghua, Jia Xiaomei, Wu Yanqing, Wang Yuekun, Song Weiyang, Liu Yinuo. Ability of DSE against Abiotic Stresses and Improving Drought Resistance of Solanum tuberosum [J]. Crops, 2023, 39(6): 150-159. |
[7] | Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25. |
[8] | Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194. |
[9] | Ren Honglei, Zhang Fengyi, Han Xinchun, Hong Huilong, Zhu Xiao, Wang Guangjin, Qiu Lijuan. Drought Tolerance Evaluation of Soybean Mini Core Collections [J]. Crops, 2023, 39(6): 94-100. |
[10] | Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254. |
[11] | Yu Le, Li Lin, Huang Hongjuan, Huang Zhaofeng, Zhu Wenda, Wei Shouhui. Weed Species Composition and Community Characterization in Maize Fields in Hubei Province [J]. Crops, 2023, 39(5): 272-279. |
[12] | Yang Zongying, Xiao Gui, Zhang Hongwei. Whole-Genome Predictive Analysis of Fresh Weight per Plant Using the Maize F1 Population [J]. Crops, 2023, 39(5): 43-48. |
[13] | Qu Haitao, Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Tan Zhuo, Wang Chun, Wei Qiang, Luo Yao, Li Guangfa. Study on Genetic and Breeding Effects of 100-Grain Weight in Maize [J]. Crops, 2023, 39(5): 66-70. |
[14] | Yang Mi, Wang Meijuan, Xu Haitao. Study on the Dynamic Development Difference of Husk of Maize Inbred Lines in Different Ecological Regions [J]. Crops, 2023, 39(5): 81-90. |
[15] | Yang Cheng, Zhang Deqi, Du Simeng, Zhang Lijia, Jin Haiyang, Li Ying, Shao Yunhui, Wang Hanfang, Fang Baoting, Li Xiangdong, Liu Meijun. Effects of Dark and Strong Light Dehydration on the Photosystem Activity in Wheat Leaves in Vitro [J]. Crops, 2023, 39(5): 98-103. |
|