Crops ›› 2024, Vol. 40 ›› Issue (1): 73-79.doi: 10.16035/j.issn.1001-7283.2024.01.010

;

Previous Articles     Next Articles

Genetic Diversity Analysis of Landraces and Improved Varieties of Mung Bean by EST-SSR Markers

Wang Yueying1,2(), Fan Baojie1, Cao Zhimin1, Wang Yan1, Su Qiuzhu1, Zhang Zhixiao1, Wang Shen1, Shi Huiying1, Shen Yingchao1, Cheng Xuzhen3, Liu Changyou1(), Tian Jing1()   

  1. 1Institute of Food and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Hebei Laboratory of Crop Genetic Breeding, Shijiazhuang 050031, Hebei, China
    2China National Rice Research Institute, Chinese Academy of Agricultural Sciences / State Key Laboratory of Rice Biology, Hangzhou 310006
    3Zhejiang, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2022-09-29 Revised:2023-11-24 Online:2024-02-15 Published:2024-02-20
  • Contact: Liu Changyou,Tian Jing E-mail:wyywangyueying@163.com;35931915@qq.com;nkytianjing@163.com

Abstract:

We used 16 EST-SSR markers covering 11 chromosomes of mung bean genome to analyze the genetic diversity of 156 mung bean landraces and 53 improved mung bean varieties from 15 different provinces in China. The results showed that 16 EST-SSR markers detected a total of 57 alleles, with an average of 3.56 alleles per marker, and the average effective alleles number (Ne) was 1.89, the Shannon?s information index (PIC) was 0.70. Compared with the improved mung bean varieties, the observed allele number, Ne, the expected heterozygosity and PIC of the landraces were higher, indicating that the genetic diversity of landraces was higher than that of the improved mung bean varieties. The Structure analysis divided all resources into three distinct groups. The resources in the group tend to gather according to geographical origin, and the average genetic distance between germplasms in the three groups had little difference. Using UPGMA method for cluster analysis, all the mung bean resources could be divided into group A, B and C. Group A concentrated most improved mung bean varieties, while group B and C were mainly landraces. The genetic consistency of 12 populations from different geographical sources ranged from 0.4706 to 0.9627.

Key words: Mung bean, EST-SSR marker, Germplasm resources, Genetic diversity

Table 1

The 16 polymorphic EST-SSR markers for the analysis of the genetic diversity of mung bean germplasm resources"

标记名称
Marker name
染色体
Chromosome
引物序列
Primer sequence (5'-3')
来源基因注释
Gene annotation
退火温度
Tm (℃)
SYD338 Chr 8 CCTTCACACCCTTTTCTGATTC 转录体X1 55
GGGTTTCCTTCTTGGTCTCC 锌指蛋白JAGGED(LOC106770716) 55
SYD358 Chr 5 GTGATGGTGCTGCTTTTCAA 蛋白Dr1同源物(LOC106756201) 55
ATGCGTGGGGAGAAGTAAGA 55
SYD422 Chr 3 TCAGGTTTTGCAACTGGGTA 未注释(LOC106759383) 55
TTCCTCAGCAAACGATGTTG 55
SYD526 Chr 9 TGGGGACAGTCTTAAACCACA squamosa启动子结合样蛋白8(LOC106773739) 55
GCCCTAATTTGGAGAGCTTG 55
SYD747 Chr 3 GCAGGCAATACGAGGAGTTC 未注释(LOC106776533) 55
AGGGTCGGTCCATCAACATA 55
SYD753 Chr 4 ATTCAAGCCAGAGAAGGCAA GATA锌指结构域蛋白14(LOC106754216) 55
GGTGGGAGGGTATTGGCTAT 55
SYD965 Chr 6 AACTGCTGTGGTAGATGGGG 转录共抑制因子SEUSS(LOC106764757) 55
GGCAGCAGTAAAAATGGAGC 55
SYD1051 Chr 2 CTCTGCTAGTTCCACACCCC 稻草人样蛋白4(LOC106779206) 55
CTGTGTAGCGTTGGGAAGGT 55
SYD1159 Chr 5 ATGTTTGAGGCATTTCCCTG 介导RNA聚合酶II转录亚基15a(LOC106760781) 55
ATCAGGCAACAACAACCACA 55
SYD1175 Chr 4 CCCCAGAATCAAGAAATCCA 托品酮还原酶同源物At5g06060(LOC106757582) 55
GCTCTCGTTACTGGAGGCAC 55
SYD1265 Chr 2 AGCGGGAAGGAAGATGAGAT SCY1样蛋白2(LOC106756108) 55
GGCACAGCTCCCTCTAATTG 55
SYD1276 Chr 1 ATTGAAGTGCCCTTGTTTGC α-1,4葡聚糖磷酸化酶L同工酶,叶绿体/淀粉样(LOC106770459) 55
GAACATTCAACCAGCCCAAT 55
SYD1283 Chr 11 ATGATGGCCTTGTTCTCCTG 未表征的膜蛋白At4g09580(LOC106776315) 55
TCCAATCTTCGTTTCTTGCC 55
SYD1717 Chr 6 GGAGACCTGGATTAGCGTGA 3-酮酰基辅酶a合成酶(LOC106765300) 55
CCACATTCACATTCCGATGA 55
SYD1722 Chr 10 GACGAAGGACAATGAATGAT 未注释(LOC106753957) 55
GAAAGAAGCCTGCTATGAAA 55
SYD1909 Chr 7 CACAGTGTGCCCTAACCAGA 天冬氨酸―tRNA连接酶,叶绿体/线粒体(LOC106766801) 55
TGAAGCCCCCACAGTATGTT 55

Fig.1

Partial electrophoretic analysis results of the marker SYD1159 M: DNA marker."

Table 2

Genetic diversity of 209 mung bean germplasm resources"

EST-SSR
标记
EST-SSR
marker
观测等位变异数
The number of observed alleles
有效等位变异数
Ne
Nei?s位点多样性
Nei?s allele diversity
Shannon?s信息指数
PIC
农家种
Landrace
育成品种
Cultivar
整体
All
农家种
Landrace
育成品种
Cultivar
整体
All
农家种
Landrace
育成品种
Cultivar
整体
All
农家种
Landrace
育成品种
Cultivar
整体
All
SYD338 9 5 9 5.04 4.24 4.99 0.80 0.76 0.80 1.79 1.50 1.77
SYD358 5 4 6 2.54 1.49 2.24 0.61 0.33 0.55 1.12 0.66 1.04
SYD422 3 3 3 1.90 1.31 1.77 0.47 0.24 0.44 0.71 0.45 0.68
SYD526 2 2 2 1.01 1.34 1.09 0.01 0.26 0.08 0.04 0.42 0.18
SYD747 3 3 3 1.69 1.72 1.70 0.41 0.42 0.41 0.66 0.72 0.68
SYD753 3 3 3 1.22 1.81 1.37 0.18 0.45 0.27 0.36 0.70 0.48
SYD965 3 2 3 1.54 1.30 1.47 0.35 0.23 0.32 0.56 0.39 0.52
SYD1051 4 3 4 1.79 1.89 1.82 0.44 0.47 0.45 0.79 0.78 0.80
SYD1159 3 2 3 1.79 1.77 1.79 0.44 0.44 0.44 0.69 0.63 0.68
SYD1175 3 3 3 1.91 2.98 2.29 0.48 0.66 0.56 0.83 1.10 0.95
SYD1265 3 2 3 1.76 1.32 1.65 0.43 0.24 0.39 0.65 0.41 0.61
SYD1276 2 3 3 1.01 1.36 1.09 0.01 0.27 0.09 0.04 0.49 0.20
SYD1283 3 2 3 1.83 1.42 1.74 0.45 0.30 0.43 0.69 0.47 0.65
SYD1717 3 3 3 2.10 1.66 2.11 0.52 0.40 0.53 0.81 0.65 0.80
SYD1722 3 2 3 2.03 1.34 1.86 0.51 0.26 0.46 0.80 0.42 0.74
SYD1909 3 3 3 1.11 1.61 1.23 0.10 0.38 0.19 0.24 0.62 0.38
合计Total 55 45 57
平均值Mean 3.44 2.81 3.56 1.89 1.79 1.89 0.39 0.38 0.38 0.67 0.65 0.70
标准差Standard deviation 1.63 0.83 1.67 0.94 0.77 0.90 0.21 0.16 0.16 0.42 0.29 0.37

Fig.2

Three clusters (populations) inferred by Structure analysis"

Table 3

Compositions of the three populations inferred by Structure analysis"

Structure组群
Structure population
组群内遗传距离
Average distance within population
资源份数
Number of accessions
比例
Percentage (%)
资源来源(份数)
Origin of accession (number of accessions)
组群1 Pop1 0.2848 74 35.41
农家种Landrace
68
91.89
北京(7);重庆(8);河北(18);河南(14);湖南(5);山东(6);山西(7);陕西(3)
育成品种Cultivar 6 8.11 山西(3);陕西(1);吉林(1);河北(1)
组群2 Pop2 0.3454 60 28.71
农家种Landrace
40
66.67
安徽(14);重庆(1);河北(1);湖北(8);黑龙江(6);山东(6);山西(1);陕西(3)
育成品种Cultivar 20 33.33 AVRDC(9);北京(4);广西(1);河北(1)
组群3 Pop3 0.1680 75 35.88
农家种Landrace

48

64.00

安徽(2);北京(5);湖北(7);河南(1);湖南(1);辽宁(7);黑龙江(7);山东(7);山西(7);陕西(3)
育成品种Cultivar

27

36.00

安徽(2);北京(2);河北(9);河南(3);吉林(4);江苏(1);辽宁(1);黑龙江(1);山东(4);山西(1)

Fig.3

UPGMA cluster analysis of 209 mung bean accessions HB: Hebei; BJ: Beijing; JL: Jilin; SX: Shanxi; SD: Shandong; LN: Liaoning; GX: Guangxi; AH: Anhui; HN: Henan; hn: Hunan; sx: Shaanxi; JS: Jiangsu; CQ: Chongqing; hb: Hubei; QQHE: Qiqihar; C: Cultivars: L: Landrace."

Table 4

Genetic consistency (above diagonal) and genetic distance (below diagonal) among 12 populations"

群体
Population
黑龙江
Heilongjiang
辽宁
Liaoning
北京
Beijing
河北
Hebei
河南
Henan
山东
Shandong
山西
Shanxi
陕西
Shaanxi
安徽
Anhui
湖北
Hubei
重庆
Chongqing
海南
Hainan
黑龙江Heilongjiang 0.9563 0.9309 0.9031 0.8609 0.9627 0.7984 0.5861 0.8418 0.8836 0.8143 0.8095
辽宁Liaoning 0.0447 0.8629 0.8783 0.8139 0.9144 0.7647 0.6080 0.7667 0.8500 0.8577 0.8790
北京Beijing 0.0716 0.1474 0.9568 0.8409 0.9335 0.8903 0.6559 0.9385 0.7857 0.6726 0.7169
河北Hebei 0.1019 0.1297 0.0441 0.8385 0.9287 0.8651 0.6936 0.9413 0.7694 0.6745 0.7145
河南Henan 0.1498 0.2059 0.1733 0.1761 0.8336 0.8619 0.7475 0.7768 0.7217 0.6547 0.6198
山东Shandong 0.0380 0.0895 0.0688 0.0739 0.1819 0.8487 0.6106 0.8819 0.8847 0.7804 0.8075
山西Shanxi 0.2251 0.2683 0.1161 0.1449 0.1486 0.1641 0.8415 0.8272 0.6479 0.5927 0.6346
陕西Shaanxi 0.4987 0.4494 0.4217 0.3440 0.2671 0.4647 0.1670 0.6692 0.4706 0.5387 0.5073
安徽Anhui 0.1722 0.2657 0.0634 0.0605 0.2526 0.1256 0.1897 0.4016 0.6895 0.5704 0.6762
湖北Hubei 0.1238 0.1625 0.2412 0.2621 0.3261 0.1226 0.4341 0.7538 0.3718 0.8999 0.7670
重庆Chongqing 0.2054 0.1535 0.3966 0.3938 0.4235 0.2479 0.5231 0.6186 0.5615 0.1054 0.7846
海南Hainan 0.2113 0.1290 0.3328 0.3362 0.4784 0.2139 0.4548 0.6787 0.3912 0.2652 0.2425
[1] Chen H L, Qiao L, Wang L X, et al. Assessment of genetic diversity and population structure of mung bean (Vigna radiata) germplasm using EST-based and genomic SSR markers. Gene, 2015, 566(2):175-183.
doi: 10.1016/j.gene.2015.04.043 pmid: 25895480
[2] Chen H L, Wang L X, Wang S H, et al. Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers. PLoS ONE, 2015, 10(4):e0120273.
doi: 10.1371/journal.pone.0120273
[3] Kim S K, Nair R M, Lee J, et al. Genomic resources in mungbean for future breeding programs. Frontiers in Plant Science, 2015, 6:626.
doi: 10.3389/fpls.2015.00626 pmid: 26322067
[4] 程须珍. 绿豆种质资源挖掘与新品种创制应用研究取得重要进展. 植物遗传资源学报, 2015, 16(4):674.
[5] 刘慧. 我国绿豆生产现状和发展前景. 农业生产展望, 2012, 8(6):36-39.
[6] 刘浩, 周闲容, 于晓娜, 等. 作物种质资源品质性状鉴定评价现状与展望. 植物遗传资源学报, 2014, 15(1):215-221.
[7] 任红晓, 姜翠棉, 高运青, 等. 中国传统名优绿豆种质资源表型性状形态多样性. 作物杂志, 2017(1):44-47.
[8] 张盼盼, 张洪鹏, 张敬禹, 等. 绿豆种质资源农艺性状的因子分析及综合评价. 中国农学通报, 2017, 33(6):34-41.
doi: 10.11924/j.issn.1000-6850.casb16040131
[9] 乔玲, 陈红霖, 王丽侠, 等. 国外绿豆种质资源农艺性状的遗传多样性分析. 植物遗传资源学报, 2015, 16(5):986-993.
doi: 10.13430/j.cnki.jpgr.2015.05.009
[10] 朱慧珺. 山西省绿豆种质资源表型性状遗传多样性分析. 晋中:山西农业大学, 2015.
[11] 张毅华, 张耀文, 张泽燕. 绿豆种质资源表型性状多样性分析. 农学学报, 2013, 3(1):15-19.
[12] 王建波. ISSR分子标记及其在植物遗传学研究中的应用. 遗传, 2002, 24(5):613-616.
[13] Chen H L, Liu L P, Wang L X, et al. Development of SSR markers and assessment of genetic diversity of adzuki bean in the Chinese germplasm collection. Molecular Breeding, 2017, 37(5):66.
doi: 10.1007/s11032-017-0662-4
[14] Sangiri C, Kaga A, Tomooka N, et al. Genetic diversity of the mungbean (Vigna radiata, Leguminosae) genepool on the basis of microsatellite analysis. Australian Journal of Botany, 2008, 55 (8):837-847.
doi: 10.1071/BT07105
[15] Wang L X, Elbaidouri M, Abernathy B, et al. Distribution and analysis of SSR in mung bean (Vigna radiata L.) genome based on an SSR-enriched library. Molecular Breeding, 2015, 35(1):25.
doi: 10.1007/s11032-015-0259-8
[16] 刘岩, 程须珍, 王丽侠, 等. 基于SSR标记的中国绿豆种质资源遗传多样性研究. 中国农业科学, 2013, 46(20):4197-4209.
doi: 10.3864/j.issn.0578-1752.2013.20.003
[17] 赵雪英, 王宏民, 李赫, 张耀文. 绿豆种质资源的ISSR遗传多样性分析. 植物遗传资源学报, 2015, 16(6):1277-1282.
doi: 10.13430/j.cnki.jpgr.2015.06.020
[18] 王丽侠, 程须珍, 王素华, 等. 小豆SSR引物在绿豆基因组中的通用性分析. 作物学报, 2009, 35(5):816-820.
[19] 任红晓, 程须珍, 徐东旭, 等. 应用SSR标记分析中国北方名优绿豆的遗传多样性. 植物遗传资源学报, 2015, 16(2):395-399.
doi: 10.13430/j.cnki.jpgr.2015.02.028
[20] 杨新泉, 刘鹏, 韩宗福, 等. 普通小麦Genomic-SSR和EST-SSR分子标记遗传差异及其与系谱遗传距离的比较研究. 遗传学报, 2005, 32(4):406-416.
[21] Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15(1):8-15.
doi: 10.1007/BF02772108
[22] Liu C Y, Fan B J, Cao Z M, et al. A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata). Journal of Genetics, 2016, 95(3):527.
pmid: 27659323
[23] Evanno G S, Regnaut S J, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14(8):2611-2620.
doi: 10.1111/j.1365-294X.2005.02553.x pmid: 15969739
[24] 姜伟, 何觉民, 陆建农, 等. 中国主要棉花栽培群体的遗传多样性分析. 农业生物技术学报, 2008, 16(1):127-133.
[25] 宫慧慧, 谢华, 马荣才, 等. 利用SSR分析小豆种质遗传多样性. 农业生物技术学报, 2008, 16(5):872-880.
[26] 王丽侠, 程须珍, 王素华, 等. 应用SSR标记对小豆种质资源的遗传多样性分析. 作物学报, 2009, 35(10):1858-1865.
doi: 10.3724/SP.J.1006.2009.01858
[27] 徐宁, 程须珍, 王丽侠, 等. 用于中国小豆种质资源遗传多样性分析SSR分子标记筛选及应用. 作物学报, 2009, 35(2):219-227.
doi: 10.3724/SP.J.1006.2009.00219
[28] Cho Y G, Ishii T, Temnykh S, et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2000, 100 (5):713-722.
doi: 10.1007/s001220051343
[1] Liu Dan, Wang Jiayu, Feng Zhangli, Feng Bo, Chen Wenfu. Analysis on Genetic Diversity and Population Structure for Japonica Rice Varieties in Liaoning Province [J]. Crops, 2024, 40(1): 40-47.
[2] Sun Yuantao, Long Wenjing, Li Yuan, Liu Tianpeng, Zhao Ganlin, Ding Guoxiang, Ni Xianlin. Genetic Diversity Analysis of 45 Glutinous Sorghum Germplasms Based on Major Agronomic Traits and SSR Markers [J]. Crops, 2024, 40(1): 57-64.
[3] Qu Zhihua, Zhang Lili, Hu Yang, Qiao Haiming, Li Feng, Bai Wei. Agronomic Characteristics Evaluation on Introduced Flax Germplasm Resources [J]. Crops, 2023, 39(6): 47-53.
[4] Zhao Feng, Bao Qijun, Pan Yongdong, Liu Xiaoning, Zhang Huayu, Niu Xiaoxia. Comprehensive Evaluation of Genetic Diversity in 70 Barley Germplasms [J]. Crops, 2023, 39(6): 54-61.
[5] Yang Enze, Wang Shuyan, Liu Ruixiang, Shi Fengyuan, Zhang Jinhao, Li Jiana, Li Zhiwei, Guo Zhanbin. Genetic Diversity Analysis of Quinoa Germplasm Resources Based on SRAP [J]. Crops, 2023, 39(6): 79-85.
[6] Zhang Shangpei, Yang Junxue, Luo Shiwu, Wang Yong, Zhang Xiaojuan, Cheng Bingwen. Genetic Diversity and Yielding Ability Analysis of Agronomic Traits in Broom Corn Millet [J]. Crops, 2023, 39(5): 37-42.
[7] Gao Zhanning, Yang Yongqian, Wang Shujie, Feng Hui, Xue Zhenggang. Comprehensive Evaluation of 143 Barley Germplasm Resources [J]. Crops, 2023, 39(5): 59-65.
[8] ChenZhikai , Hou Wanwei. Evaluation and Selection of Pisumsativum L. Germplasm Resources Based on Agronomic Traits [J]. Crops, 2023, 39(4): 38-43.
[9] Li Qingfeng, Gao Jie, Peng Qiu. Genetic Diversity Analysis of Agronomic and Quality Characteristics of Amaranthus Resources in Guizhou Province [J]. Crops, 2023, 39(4): 60-64.
[10] Chen Cuiping, Yan Dianhai, Zhang Shumiao, Zuo Haonan, Gao Sen, Liu Yang. Fingerprint Construction and Genetic Diversity Analysis of Quinoa Based on SSR Markers [J]. Crops, 2023, 39(3): 35-42.
[11] Song Yun, Zhang Xinrui, He Jiaxin, Li Zheng, Sun Zhe, Li Aoxuan, Qiao Yonggang. Genetic Diversity Analysis of Sophora flavescens Ait. Germplasm Resources Based on cpSSR Markers [J]. Crops, 2023, 39(1): 30-37.
[12] Huang Guibin, Guan Yaobing, Niu Yongqi, Zhou Lilei, Zhao Yongfeng. Comprehensive Evaluation of 12 Major Agronomic Traits of 103 Chickpea Germplasm Resources [J]. Crops, 2023, 39(1): 6-13.
[13] Hou Xue, Chen Yujie, Li Chunmiao, Fang Shumei, Liang Xilong, Zheng Dianfeng. Regulating Effects of Prohexadione-Calcium on the Growth of Mung Bean Seedlings under Saline-Alkali Stress [J]. Crops, 2022, 38(6): 174-180.
[14] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[15] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!