Crops ›› 2017, Vol. 33 ›› Issue (6): 131-139.doi: 10.16035/j.issn.1001-7283.2017.06.022

Previous Articles     Next Articles

Effects of Inoculating Arbuscular Mycorrhizal Fungi on Growth of Quinoa under Different Phosphorus Levels

Pang Chunhua1,2,Yang Shifang1,Zhang Yongqing1,Hua Yanhong1,He Xiao1,Yang Yang2   

  1. 1College of Life Sciences,Shanxi Normal University,Linfen 041000,Shanxi,China
    2Modern College of Arts and Science,Shanxi Normal University,Linfen 041000,Shanxi,China
  • Received:2017-06-22 Revised:2017-09-27 Online:2017-12-15 Published:2018-08-26

Abstract:

A pot culture experiment was conducted to investigate the effects of inoculating two kinds of arbuscular mycorrhizal fungi (AM) including Glomus mosseae (Gm) and Glomus tortuosum (Gt) on the quinoa growth, root growth indicators and root physiological indicators, chlorophyll fluorescence parameters, yield and its components under the different phosphorus application rates of 0, 50, 100 and 200mg/kg. The results showed that inoculation of Gm had the highest infection rate and mycorrhizal dependency of quinoa under 100mg/kg phosphorus application rate. Under the same inoculated treatment, plant height, stem diameter, leaf area, aboveground weight, the max length of root and other root growth indicators, antioxidant enzyme activities of root, chlorophyll contents, maximal PSⅡ photochemical efficiency (Fv/Fm), potential activity of PSⅡ(Fv/Fo), yield and its components were initially increased and then decreased with the increasing phosphorus application rate. Compared with the uninoculated treatment, the above indicators were significantly improved after AM fungi was inoculated, except root average diameter, the values reached the maximum in the 100mg/kg phosphorus application rate, and the increase of Gm was greater than that of Gt; However root average diameter was decreased with a significant level, and the decreasing range of inoculate Gm was more than that of Gt. Under the same inoculated treatment, soluble sugar content, soluble protein content and MDA content of root system and dark adaptation to the initial fluorescence (Fo) were initially decreased and then increased with the increasing phosphorus application rate; After inoculate arbuscular mycorrhizal fungi, soluble sugar content and soluble protein content of root system were increased with a significant level, and the increasing range of inoculate Gm was more than Gt; MDA content of root system and dark adaptation to the Fo and the decreasing range of inoculate Gm was more than Gt. Taken together, especially 100mg/kg phosphorus application rate and Gm for quinoa seeds to increase growth.

Key words: Quinoa, Arbuscular mycorrhizal fungi, Phosphorus application rate, Physiological characteristic, Yield

Table 1

Effects of AM fungi on the quinoa infection rate and mycorrhizal dependency index in root of quinoa under different phosphorus application rate %"

处理
Treatment
侵染率
Infection rate
菌根依赖性指数
Mycorrhizal dependency index
NGP1 0C 0C
NGP2 0C 0C
NGP3 0C 0C
NGP4 0B 0C
GtP1 18.05±0.33Bc 21.54±0.56Bc
GtP2 23.05±0.44Bb 26.69±0.29Bb
GtP3 33.73±0.60Ba 34.58±0.38Ba
GtP4 9.67±0.49Ad 13.76±0.26Ad
GmP1 19.90±0.48Ac 22.76±0.56Ac
GmP2 25.69±0.41Ab 28.88±0.42Ab
GmP3 36.86±0.36Aa 37.58±0.46Aa
GmP4 9.89±0.59Ad 13.83±0.28Ad

Table 2

Effects of AM fungi on the shoot growth of quinoa under different phosphorous application rate"

处理Treatment 株高Plant height (cm) 茎粗Stem diameter (mm) 叶面积Leaf area (mm2) 地上部干重Shoot dry weight (g)
NGP1 41.67±1.53Bb 3.92±0.19Bd 3.99±0.17Bd 4.05±0.44Bd
NGP2 44.67±2.52Cb 4.96±0.07Cb 6.08±0.34Cb 8.20±0.51Bb
NGP3 60.33±2.08Ca 6.46±0.24Ca 7.89±0.23Ca 12.22±0.44Ca
NGP4 44.33±1.53Cb 4.57±0.03Cc 5.51±0.10Bc 6.48±0.43Cc
GtP1 48.33±2.08Ad 4.50±0.10Ac 5.05±0.18Ad 6.41±0.44Ad
GtP2 62.67±2.51Bb 5.34±0.23Bb 6.90±0.32Bb 10.12±0.54Ab
GtP3 81.67±1.53Ba 7.24±0.15Ba 6.91±0.20Ba 14.42±0.23Ba
GtP4 54.00±1.00Bc 4.83±0.18Bc 5.87±0.19ABc 8.40±0.38Bc
GmP1 52.33±2.52Ad 4.74±0.05Ac 5.36±0.16Ad 6.75±0.39Ad
GmP2 70.00±2.00Ab 5.93±0.21Ab 7.64±0.14Ab 10.74±0.28Ab
GmP3 92.00±2.00Aa 8.87±0.22Aa 9.52±0.17Aa 16.53±0.27Aa
GmP4 58.00±2.00Ac 5.15±0.13Ac 6.06±0.24Ac 9.48±0.24Ac

Table 3

Effects of AM fungi on root growth of quinoa under different phosphorous application rate"

处理
Treatment
最长根长(cm)
Length of the longest root
根系平均直径(mm)
Root average diameter
根系总表面积(cm2)
Total root area
根系体积(cm3)
Root volume
NGP1 7.04±0.21Bc 0.69±0.03Ad 328.68±7.49Bd 8.27±0.29Cd
NGP2 7.62±0.22Cb 0.86±0.02Ab 377.63±7.12Cb 10.80±0.55Cb
NGP3 9.05±0.18Ca 1.26±0.02Aa 412.62±6.56Ca 14.35±0.35Ca
NGP4 7.30±0.13Bc 0.74±0.02Ac 347.90±6.80Bc 9.00±0.29Bc
GtP1 7.33±0.13ABc 0.61±0.02Bd 352.07±9.66Ad 9.07±0.34Bd
GtP2 8.41±0.26Bb 0.80±0.01Bb 419.86±5.81Bb 12.59±0.35Bb
GtP3 10.55±0.22Ba 1.04±0.04Ba 461.39±6.88Ba 17.16±0.33Ba
GtP4 7.62±0.20Bc 0.69±0.02ABc 380.23±5.55Ac 10.31±0.41Ac
GmP1 7.55±0.18Ad 0.57±0.02Bd 356.18±5.73Ad 9.85±0.26Ad
GmP2 9.09±0.35Ab 0.74±0.02Cb 438.56±5.83Ab 13.66±0.45Ab
GmP3 11.43±0.18Aa 0.96±0.02Ca 479.23±6.33Aa 18.00±0.26Aa
GmP4 8.10±0.16Ac 0.67±0.03Bc 387.47±6.34Ac 10.61±0.27Ac

Fig.1

Effects of AM fungi on thephysiological index of quinoa root under different phosphorous application rate The different capital letters indicate significant difference among different inoculation treatments at 0.05 level, while the different lowercase letters indicate significant difference among different phosphorus application rates within same inoculation treatment at 0.05 level"

Table 4

Effects of AM fungi on the chlorophyll content and chlorophyll fluorescence parameters of quinoa under different phosphorous application rate"

处理Treatment 叶绿素含量Chlorophyll content (mg/g) Fo Fv/Fm Fv/Fo
NGP1 1.36±0.04Bd 321.00±9.64Aa 0.60±0.01Cc 1.67±0.07Cd
NGP2 1.56±0.06Cc 284.67±5.69Ac 0.67±0.02Ca 2.39±0.11Cb
NGP3 1.96±0.03Ca 265.00±6.25Ad 0.72±0.01Ca 3.15±0.11Ca
NGP4 1.70±0.03Bb 305.00±7.00Ab 0.64±0.01Cb 2.04±0.06Cc
GtP1 1.44±0.04Ad 294.33±6.03Ba 0.65±0.01Bc 2.26±0.10Bd
GtP2 1.64±0.07Bc 267.67±6.66Bb 0.72±0.03Bb 2.96±0.11Bb
GtP3 2.12±0.08Ba 252.00±5.29Bc 0.77±0.01Ba 3.65±0.11Ba
GtP4 1.89±0.06Ab 293.33±7.57Ba 0.68±0.01Bb 2.57±0.08Bc
GmP1 1.48±0.03Ad 282.67±6.43Ba 0.70±0.02Ad 2.59±0.09Ad
GmP2 1.78±0.02Ac 253.00±6.08Cb 0.76±0.01Ab 3.36±0.09Ab
GmP3 2.41±0.02Aa 241.67±7.64Bb 0.82±0.01Aa 4.07±0.10Aa
GmP4 1.97±0.05Ab 281.67±9.07Ba 0.74±0.01Ac 3.07±0.07Ac

Table 5

Effects of AM fungi on yield and its components of quinoa under different phosphorous application rate"

处理
Treatment
主枝穗长(cm)
Ear length of the
main branch
千粒重(g)
1000-grain
weight
单株粒重(g)
Grain weight
per plant
NGP1 17.45±0.45Bc 1.57±0.06Bc 51.19±0.84Bc
NGP2 18.46±0.37Cbc 2.10±0.05Cb 61.08±0.93Cb
NGP3 19.85±0.52Ca 2.44±0.05Ca 65.12±0.69Ca
NGP4 17.99±0.15Cb 2.17±0.05Cb 60.96±0.88Bb
GtP1 18.37±0.38ABc 1.74±0.05Ad 53.79±0.99Ad
GtP2 19.57±0.22Bb 2.30±0.05Bc 64.68±0.56Bb
GtP3 21.22±0.46Ba 2.90±0.05Ba 71.29±0.77Ba
GtP4 19.21±0.31Bb 2.57±0.06Bb 61.97±0.71Ac
GmP1 19.15±0.54Ac 1.76±0.05Ac 54.88±0.90Ac
GmP2 20.51±0.57Ab 2.79±0.07Ac 66.05±0.18Ab
GmP3 22.61±0.52Aa 3.04±0.10Aa 72.93±0.91Aa
GmP4 20.25±0.32Ab 2.77±0.08Ab 62.55±0.50Ab
[1] Jacobsen S E . The worldwide potential for quinoa (Chenopodium quinoa Wild). Food Reviews International, 2003,19:167-177.
doi: 10.1081/FRI-120018883
[2] Autul B, Sudhir S, Deepak O . Chenophodium quinoa-An Indian perspective. Industrial Crops and Products, 2006,23:73-87.
doi: 10.1016/j.indcrop.2005.04.002
[3] Karyotis T, Iliadis C, Noulas C , et al. Preliminary research on seed production and nutrient content for certain quinoa varieties in a saline-sodic soil. Journal of Agronomy and Crop Science, 2003,189:402-408.
doi: 10.1046/j.0931-2250.2003.00063.x
[4] Abugoch L, Romero N, Tapia C , et al. Study of physicochemical and functional properties of quinoa (Chenpodium quinoa Wild) protein isolates. Journal of Agricultural and Food Chemistry, 2008,56:4745-4750.
doi: 10.1021/jf703689u
[5] Jacobsen S E, Mujica A, Jesen C R . The resistance of quinoa (Chenopodium quinoa Wild) to adverse abiotic factors. Food Reviews International, 2003,19(1/2):99-109.
doi: 10.1081/FRI-120018872
[6] Hariadi Y, Marandon K, Tian Y , et al. Ionic and osmotic relations in quinoa (Chenopodium quinoa Wild) plants grown at various salinity levels. Journal of Experimental Botany, 2011,62(1):185-193.
doi: 10.1093/jxb/erq257
[7] Koyro H W, Eisa S S . Effect of salinity on composition,viability and germination of seeds of Chenopodium quinoa Wild. Plant and Soil, 2008,302(1):79-90.
doi: 10.1007/s11104-007-9457-4
[8] 叶少萍, 曾秀华, 辛国荣 , 等. 不同磷水平下丛枝菌根真菌(AMF)对狗牙根生长与再生的影响. 草业学报, 2013,22(1):46-52.
doi: 10.11686/cyxb20130106
[9] 王瑜 . 水磷耦合对冬小麦水磷利用与产量的影响及其生理基础. 泰安:山东农业大学, 2012.
[10] Abelson P H . A potential posphate crisis. Science, 1999,283(5410):2015-2021.
doi: 10.1126/science.283.5410.2015
[11] 全为民, 严力娇 . 农业面临污染对水体富营养化的影响及其防治措施. 生态学报, 2002,22(3):291-299.
[12] 王立, 贾文奇, 马放 , 等. 菌根技术在环境修复领域中的应用及展望. 生态环境学报, 2010,19(2):487-493.
[13] 杨振寅, 廖声熙 . 丛枝菌根对植物抗性的研究进展. 世界林业研究, 2005,18(2):1-3.
[14] 任爱天, 鲁为华, 杨洁晶 , 等. 不同磷水平下AM真菌对紫花苜蓿生长和磷利用的影响. 中国草地学报, 2014,38(6):20-24.
[15] 王幼珊, 张淑彬, 张美庆 , 等. 中国丛枝菌根真菌资源.北京: 中国农业出版社, 2012: 165-168.
[16] 高俊凤 . 植物生理生态学实验指导.北京: 高等教育出版社, 2006: 140-143.
[17] Shen J B, Yuan L X, Zhang J L , et al. Phosphorus dynamics:From soil to plant. Plant Physiology, 2011,156(3):318-325.
[18] 邵宗臣, 赵美芝 . 土壤中积累态磷活化动力学的研究Ⅰ.有机质的影响. 土壤学报, 2002,39(3):318-325.
[19] 陈梅梅, 陈保冬, 王新军 , 等. 不同磷水平土壤接种丛枝菌根真菌对植物生长和养分吸收的影响. 生态学报, 2009,29(4):1980-1985.
doi: 10.3321/j.issn:1000-0933.2009.04.043
[20] Barea J M . Vesicular-arbuscular mycorrhizase as modifiers of soil fertility. Advance Soil Science, 1991,15:1-40.
doi: 10.1007/978-1-4612-3030-4
[21] Chen B D, Roos P, Borggaard O K , et al. Mycorrhiza and root hairs in barley enhance acquisition of phosphorous and unranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytologist, 2005,165:591-598.
[22] 丁海彬, 周芹, 刘娜 , 等. 不同氮磷营养水平对甜菜叶片光合速率的影响.中国糖科, 2001(3):19-21.
doi: 10.3969/j.issn.1007-2624.2001.03.005
[23] Hallett P D, Feeney D S, Bengough A G , et al. Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant and Soil, 2009,314(1):183-196.
doi: 10.1007/s11104-008-9717-y
[24] Abott L K, Robbott A D . The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inculation. Crop and Pasture Science, 1982,33(2):389-408.
doi: 10.1071/AR9820389
[25] 邹英宁, 吴强盛, 李艳 . 丛枝菌根真菌对枳根系形态和蔗糖、葡萄糖含量的影响. 应用生态学报, 2014,25(4):1125-1129.
[26] 曾淑华, 刘峰, 周昌贵 , 等. 镉胁迫对烤烟生长和生理生化指标的影响. 核农学报, 2014,28(3):526-531.
doi: 10.11869/j.issn.100-8551.2014.03.0526
[27] 曾广伟, 林琪, 林金哲 , 等. 不同土壤水分条件下施磷对小麦旗叶衰老及产量的影响.中国土壤与肥料, 2010(2):35-40.
doi: 10.11838/sfsc.20100208
[28] 孟德云, 侯林琳, 杨莎 , 等. 外源多胺对盆栽花生盐胁迫的缓解作用. 植物生态学报, 2015,39(12):1209-1215.
doi: 10.17521/cjpe.2015.0117
[29] 王丽燕 . NaCl处理对野大豆生理生化特性的影响. 大豆科学, 2008,27(6):1067-1071.
[30] 刘静, 马淼 . 丛植菌根真菌对超旱生植物刺山柑生长及相关生理指标的影响. 西北农业学报, 2013,22(11):158-162.
[31] 陈笑莹, 宋凤斌, 朱先灿 , 等. 低温处理胁迫下丛枝菌根对玉米幼苗形态、生长和光合的影响. 华北农学报, 2014,29(增刊):155-161.
[1] Zhao Xin, Chen Shaofeng, Wang Hui, . Research on the Yield and Quality of Different Tartaty#br# Buckwheat Varieties in Northern Shanxi Area [J]. Crops, 2018, 34(5): 27-32.
[2] Wu Ronghua, Zhuang Kezhang, Liu Peng, Zhang Chunyan. Response of Summer Maize Yield to#br# Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[3] Su Feifei, Zhang Jinghua, Li Yong, Liu Shangwu, Liu Zhenyu, Wang Shaopeng, Wan Shuming, Chen Xi, Gao Yunfei, Hu Linshuang, Lü Dianqiu. Effects of Different Irrigation Methods on#br# Physiological Characteristics and Water#br# Use Efficiency of Potato [J]. Crops, 2018, 34(5): 97-103.
[4] Zhang Ruidong, Cao Xiong, Yue Zhongxiao, . Effects of Nitrogen and Density Interaction on Grain#br# Yield and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2018, 34(5): 110-115.
[5] An Xia, Zhang Haijun, Jiang Fangshan, Lü Lianjie, Chen Jun. Effects of Different Sowing Dates and Sowing#br# Densities on the Population Structure and#br# Yield of Two Spike Type Winter Wheats [J]. Crops, 2018, 34(5): 132-136.
[6] Gao Wenjun, Yang Guoyi, Gao Xinzhong, Yu Zhu, . The Effects of Nitrogen, Phosphorus, or Potassium#br# Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[7] Wang Xiaolin, Ji Xiaoling, Zhang Panpan, Zhang Xiong, Zhang Jing. Correlation Analysis between Aboveground Biomass#br# Allocation and Grain Yield in Different Varieties of#br# Foxtail Millet in the Dry Land of Loess Plateau [J]. Crops, 2018, 34(5): 150-155.
[8] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation [J]. Crops, 2018, 34(4): 121-125.
[9] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area [J]. Crops, 2018, 34(4): 126-130.
[10] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum [J]. Crops, 2018, 34(4): 138-142.
[11] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province [J]. Crops, 2018, 34(4): 143-148.
[12] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures [J]. Crops, 2018, 34(4): 161-166.
[13] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years [J]. Crops, 2018, 34(4): 32-36.
[14] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China [J]. Crops, 2018, 34(4): 42-47.
[15] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .