Crops ›› 2019, Vol. 35 ›› Issue (1): 168-174.doi: 10.16035/j.issn.1001-7283.2019.01.027

;

Previous Articles     Next Articles

Cold Resistance Physiology Variance Analysis in Grafting and Tissue Culturing Seedlings of Sweet Cherry

Xia Wu1,Deguo Lü2,Guodong Du2,Fengjun Yang1   

  1. 1 College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2 College of Horticulture, Shenyang Agricultural University, Shenyang 110161, Liaoning, China
  • Received:2018-07-25 Revised:2018-12-12 Online:2019-02-15 Published:2019-02-01

Abstract:

The purpose of this study is to find out the difference of different kinds of sweet cherry branches of hardiness and compare the difference of cold resistance between grafted seedlings and tissue culture seedlings during dormancy. The sweet cherry biennial grafted seedlings potted (Zaohongbaoshi/Dawoluoye) and tissue culture seedlings (Zaohongbaoshi) were used as the research objects. The content of soluble sugar, starch, soluble protein, proline and anthocyanin in 1-year old branches of sweet cherry grafted seedlings and tissue culture seedlings were studied. The difference between superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in shoots were compared. The results indicated that soluble sugar, starch, soluble protein, MDA content and SOD activity in the branches during natural dormancy present increased and then decreased, and branch phloem thickness and negatively correlated with conductivity branches.These indexes could be used as a cherry cold resistance identification criteria. Hibernating most grafting sampling time points and the somaclone cold resistance index difference were not significant. The cold resistance physiological indexes of grafted seedlings and tissue culture seedlings showed a similar trend during dormancy. Cold resistance physiology indicators in grafting and tissue culturing seedlings of sweet cherry had certain differences, but no significant difference, therefore consider the tissue culturing seedlings spread in use through the grafting cultivation area.

Key words: Sweet cherry, Grafting seedling, Tissue culturing seedling, Cold resistance, Physiological index

Fig.1

Changes of soluble sugar content in phloem of branches on different dates “*” indicates significant difference (P<0.05); “**” indicates extremely significant difference (P<0.01). The same below"

Fig.2

Change of starch content in phloem of branches on different dates"

Fig.3

Change of soluble protein content in phloem of branches on different dates"

Fig.4

Change of free proline content in phloem of branches on different dates"

Fig.5

Change of anthocyania content in phloem of branches on different dates"

Fig.6

Change of SOD activity in phloem of branches on different dates"

Fig.7

Change of MDA contentn in phloem of branches on different dates"

Table 1

The comparison between the anatomical structure of cherry branch"

苗木种类
Sort of seedling
韧皮部厚度(μm)
Thickness of phloem
木质部厚度(μm)
Thickness
of xylem
髓半径(%)
Radius
of pith
韧皮部比率(%)
Proportion
of phloem
木质部比率(%)
Percentage
of xylem
髓比率(%)
Percentage
of pith
电导率(%)
Specific
Conductivity
嫁接苗Grafting seedling 9.90±1.63a 16.07±1.54a 8.76±2.77a 28.51±2.04a 46.27±2.43a 25.22±3.63b 46.12±3.66a
组培苗
Tissue culturing seedling
8.70±0.86a 13.80±0.93b 10.56±1.44a 26.31±1.56a 41.73±1.30b 31.96±1.86a 48.20±2.48a

Table 2

The investigation of sprout and leaf unfold of water cultivation branch underlow temperature treatment"

苗木种类
Sort of seedling
处理温度Treating temperature
CK -13℃ -16℃ -19℃ -22℃ -25℃
嫁接苗
Grafting seedling
100%萌芽展叶 100%萌芽展叶 100%萌芽展叶 85%萌芽展叶
15%未萌芽
50%萌芽展叶
50%未萌芽
16.67%萌芽展叶
83.33%未萌芽
组培苗
Tissue culturing seedling
100%萌芽展叶 100%萌芽展叶 100%萌芽展叶 90%萌芽展叶
10%未萌芽
50%萌芽展叶
50%未萌芽
12.50%萌芽展叶
87.50%未萌芽

Table 3

Correlation between the anatomical structure and specific conductivity of cherry branch"

项目
Item
韧皮部厚度(μm)
Thickness of phloem
木质部厚度(μm)
Thickness of xylem
髓半径(%)
Radius of pith
韧皮部比率(%)
Proportion of phloem
木质部比率(%)
Percentage of xylem
髓比率(%)
Percentage of pith
电导率
Specific conductivity
-0.821* -0.402 0.366 -0.766* -0.213 0.167
[1] 董建军, 冯文涛 . 栽培大樱桃应注意的技术问题. 西北园艺(果树), 2017(4):26-27.
[2] 李勃, 刘成连, 杨瑞红 , 等. 樱桃砧木抗寒性鉴定. 果树学报, 2006,23(2):196-199.
doi: 10.3969/j.issn.1009-9980.2006.02.010
[3] 陈秋芳, 陈冲, 马碧虎 , 等. 4种甜樱桃砧木的抗寒生理特性研究. 山西果树, 2017(6):3-5.
doi: 10.3969/j.issn.1005-345X.2013.06.001
[4] Canli F A, Tian L . In vitro shoot regeneration from stored mature cotyledons of sweet cherry (Prunus avium L.) cultivars. Scientia Horticulturae, 2008,116(1):34-40.
doi: 10.1016/j.scienta.2007.10.023
[5] Godoy S, Tapia E, Seit P , et al. Temporary immersion systems for the mass propagation of sweet cherry cultivars and cherry rootstocks:development of a micropropagation procedure and effect of culture conditions on plant quality. In Vitro Cellular & Developmental Biology-Plant, 2017,53(5):494-504.
doi: 10.1007/s11627-017-9856-z
[6] 吴瑕 . 樱桃抗寒生理与抗寒性鉴定指标研究. 沈阳:沈阳农业大学, 2004.
[7] 吴禄平, 吕德国, 刘国成 . 甜樱桃无公害生产技术. 北京: 中国农业出版社, 2002: 24-26.
[8] 沈洪波 . 杏品种抗寒性研究. 泰安:山东农业大学, 2002.
doi: 10.7666/d.y438649
[9] 罗小妹, 王耀辉, 丁春元 , 等. 甘肃天水甜樱桃花期低温冻害情况调查. 中国果树, 2017(3):92-95.
doi: 10.16626/j.cnki.issn1000-8047.2017.03.024
[10] Salazar-Gutiérrez M R, Chaves B, Anothai J , et al. Variation in cold hardiness of sweet cherry flower buds through different phenological stages. Scientia Horticulturae, 2014,172:161-167.
doi: 10.1016/j.scienta.2014.04.002
[11] 陈新华, 郭宝林, 赵静 , 等. 休眠期内甜樱桃不同品种枝条的抗寒性. 河北农业大学学报, 2009,32(6):37-40.
doi: 10.3969/j.issn.1000-1573.2009.06.008
[12] 罗玉兰, 陆亮, 王泰哲 . 本地和荷兰三色堇抗寒性的比较(简报). 植物生理学通讯, 2001,37(1):27-28.
[13] 邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2000.
[14] 郝建军, 康宗利, 于洋 . 植物生理学实验技术. 北京: 化学工业出版社, 2007.
[15] 张宪政, 陈凤玉, 王荣福 . 植物生理学实验技术. 沈阳: 辽宁科学技术出版社, 1994,9(1):17-20.
[16] 赵媛媛, 刘明国, 赵伟浩 . 3种外来树种抗寒性生理指标的比较. 安徽农业科学, 2007,35(5):1298-1299.
doi: 10.3969/j.issn.0517-6611.2007.05.015
[17] 陈新华, 郭宝林, 赵静 , 等. 甜樱桃休眠期枝条SOD·POD酶活性变化研究. 安徽农业科学, 2009,37(11):4958-4959.
doi: 10.3969/j.issn.0517-6611.2009.11.050
[18] 刘珅坤, 刘庆忠, 陈锋 , 等. 甜樱桃砧木吉塞拉5抗寒性鉴定. 落叶果树, 2005,37(4):1-3.
doi: 10.3969/j.issn.1002-2910.2005.04.001
[19] 许祥明, 叶和春, 李国凤 . 脯氨酸代谢与植物抗渗透胁迫的研究进展. 植物学报, 2000,17(6):536-542.
doi: 10.3969/j.issn.1674-3466.2000.06.007
[20] 张基德, 李玉梅, 陈艳秋 , 等. 梨品种枝条可溶性糖、脯氨酸含量变化规律与抗寒性的关系. 延边大学农学学报, 2004,26(4):281-285.
doi: 10.3969/j.issn.1004-7999.2004.04.013
[21] Leyva A, Jarillo J A, Salinas J , et al. Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiology, 1995,108(1):39-46.
doi: 10.1104/pp.108.1.39
[22] 宁露云, 包满珠, 张蔚 . 低温胁迫对矮牵牛H株系花青素、游离脯氨酸及可溶性糖含量的影响. 湖北农业科学, 2016,55(6):1500-1503.
doi: 10.14088/j.cnki.issn0439-8114.2016.06.034
[23] Bhowmik P K, Tamura K, Sanada Y , et al. Sucrose metabolism of perennial ryegrass in relation to cold acclimation. Zeitschrift Für Naturforschung C, 2006,61(2):99-104.
doi: 10.1515/znc-2006-1-218 pmid: 16610225
[24] 董胜豪, 张钢, 卻书鹏 , 等. 抗寒锻炼期间白皮松电阻抗图谱参数对可溶性糖与淀粉含量变化的响应. 河北农业大学学报, 2009,32(3):53-58.
doi: 10.3969/j.issn.1000-1573.2009.03.013
[25] 范少然, 崔睿航, 武东霞 , 等. 抗寒锻炼期间丰花月季茎的抗寒性及与可溶性糖淀粉的关系//中国园艺学会. 中国观赏园艺研究进展. 北京: 中国林业出版社, 2015: 522-526.
[26] 刘天明, 张振文, 李华 , 等. 桃品种耐寒性研究. 果树学报, 2017(2):107-111.
[27] Lichev V, Papachatzis A . Influence of ten rootstocks on cold hardiness of flowers of cherry cultivar‘Bigarreau burlat’. Sodininkyste Ir Darininkyse, 2006,25(3):296-301.
[28] 郭学民, 刘建珍, 肖啸 , 等. 桃、杏和樱桃树抗寒性研究进展. 河北科技师范学院学报, 2016,30(1):1-9.
doi: 10.3969/J.ISSN.1672-7983.2016.01.001
[29] 吴瑕, 吕德国, 刘坤 . 甜樱桃嫁接苗与组培苗抗寒性比较. 沈阳农业大学学报, 2005,36(1):93-95.
doi: 10.3969/j.issn.1000-1700.2005.01.024
[1] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings [J]. Crops, 2018, 34(4): 95-101.
[2] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum [J]. Crops, 2018, 34(4): 167-174.
[3] Ning Yang,Botong Zhao,Yuzhuo Bao,Yan Lü,Kankan Peng,Yu Tian,Junhong Wang,Jing Meng,Jing Cang. Effects of Exogenous ABA and Its Inhibitor Fluridone on Cold Resistance Indicators of Winter Wheat Tiller Node [J]. Crops, 2017, 33(4): 117-122.
[4] ,Lili Zhang,Ying Shi. Screening of Drought Resistant Germplasm Resources in Potato [J]. Crops, 2017, 33(4): 72-77.
[5] Xiyu Hao,Hongdan Wang,Zhichao Yin,Jie Liang,Fengxiang Yin,Jianjun Hao. Effects of PEG Stress on Drought Resistance at Seedling Stage of Adzuki Beans and the Establishment of Drought Resistance Identification System [J]. Crops, 2017, 33(4): 134-142.
[6] Cuicui Yang,Fade Li,Yan Li,Chenglai Wu,Chunqing Zhang. Effects of Arc-Tooth-Shaped Corona Discharge Field Treatment on Improving Corn Seed Vigor and Physiological Indexes [J]. Crops, 2016, 32(6): 154-159.
[7] Dongling Qin,Zhao Li,Juping Yu,Wenyi Yang,Bing Bai,Yulong Liu,Qian Zhang,Deguang Yang. Progress on Cold Resistance and Chemical Control Mechanism of Crops [J]. Crops, 2016, 32(4): 26-35.
[8] Yingmei Zuo,Weize Yang,Tianmei Yang,Meiquan Yang,Zongliang Xu,Shaobing Yang,Jinyu Zhang. Comparison of Resistant Physiological Index among Four Species in the Genus Panax under Water Stress [J]. Crops, 2016, 32(3): 84-88.
[9] Haiyang Hu,Qingqing Fu,Lilian He,Fusheng Li. Influence of New Type Fertilizer Haishengyuan on Cold Resistance of Sugarcane [J]. Crops, 2016, 32(3): 73-78.
[10] . [J]. Crops, 2013, 29(3): 145-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .