Crops ›› 2019, Vol. 35 ›› Issue (1): 159-167.doi: 10.16035/j.issn.1001-7283.2019.01.026

;

Previous Articles     Next Articles

Identification of Cold Tolerance of Direct Seeded Early Rice Varieties at Bud Stage

Shuangqin Tang,Ziming Wu,Xueming Tan,Yongjun Zeng,Qinghua Shi,Xiaohua Pan,Yanhua Zeng   

  1. Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
  • Received:2018-11-06 Revised:2018-12-25 Online:2019-02-15 Published:2019-02-01
  • Contact: Yanhua Zeng

Abstract:

Low temperature stress is one of the most important abiotic stresses in rice production. It is important to identify cold tolerance of rice germplasm resources at bud stage and screen cold tolerant varieties for rice production. In this study, 33 early indica hybrid rice varieties and 8 conventional rice varieties in Jiangxi Province were used as experimental materials, 12 low temperature stress treatments were set up at bud stage, and the suitable identification method of cold tolerance at bud stage of early indica rice was discussed with the dead seedling rate as an index. At the same time, the seedling rate, seedling height, root length, root number, aboveground biomass, root biomass and root-shoot ratio were investigated after 10 days of 8℃ low temperature treatment. Principal component analysis, fuzzy membership function and cluster analysis were used to explore the evaluation methods of cold tolerance at bud stage of direct seeding early rice and to screen cold tolerant varieties. The results showed that the variance and variation range of dead seedling rate of direct seeding early indica rice varieties were large under 8℃low temperature for 10 days, which could better identify the difference of cold tolerance among varieties, and it was the most reasonable way to identify cold tolerance of direct seeding early indica rice at bud stage; the cold tolerance of hybrid rice varieties was stronger than that of conventional rice; the seedling rate, seedling height, root length, root number, aboveground biomass, root biomass and root-shoot comparison after low temperature stress were decreased compared with 25℃ treatment, and seven indices were transformed into three independent comprehensive indices (CI1, CI2, CI3) by principal component analysis. The principal component analysis showed that root biomass and aboveground biomass could best represent the response of direct seeding early indica rice to low temperature stress and could be used as an evaluation index for cold tolerance identification at bud stage. By cluster analysis, 41 early indica rice varieties were divided into three categories. Nine strong cold-tolerant varieties, such as Lingliangyou 7108, Liangyou 287 and Jinlingyou 816 were selected. Fifteen moderate cold-tolerant varieties, such as Zhuliangyou 1, Tanliangyou 83 and Zhuliangyou 22, and 17 cold-sensitive varieties, such as Wen 229, Zhongzao 33 and Wufengyou 157 were selected. These varieties can further serve for cold tolerance breeding and production.

Key words: Rice, Early indica rice variety, Cold tolerance of germination stage, Principal component analysis

Fig.1

Comparison of the mean value, variance and variation range of dead seedling rate among 12 low temperature treatments The different small letters mean significant difference at P=0.05"

Table 1

Dead seedling rate and cold tolerance grading under cold stress at 8℃ for 10 days"

品种类型Variety type 品种Variety 死苗率Dead seedling rate (%) 耐冷性级别Grade 耐冷性评价Cold resistance evaluation
杂交稻Hybrid rice 株两优819 Zhuliangyou 819 33.33 5 M
株两优829 Zhuliangyou 829 40.67 5 M
株两优35 Zhuliangyou 35 36.67 5 M
株两优101 Zhuliangyou 101 16.67 3 T
株两优30 Zhuliangyou 30 30.67 5 M
株两优08 Zhuliangyou 08 12.67 3 T
株两优22 Zhuliangyou 22 20.00 3 T
株两优1号Zhuliangyou 1 7.33 1 HT
陵两优611 Lingliangyou 611 43.33 5 M
陵两优211 Lingliangyou 211 30.00 5 M
陵两优0516 Lingliangyou 0516 10.67 3 T
陵两优32 Lingliangyou 32 52.00 7 S
陵两优942 Lingliangyou 942 38.67 5 M
陵两优7108 Lingliangyou 7108 5.33 1 HT
陵两优7717 Lingliangyou 7717 47.33 5 M
陵两优722 Lingliangyou 722 30.67 5 M
锦两优816 Jinliangyou 816 40.00 5 M
陆两优996 Luliangyou 996 30.67 5 M
潭两优83 Tanliangyou 83 16.67 3 T
煜两优4156 Yuliangyou 4156 54.00 7 S
中两优206 Zhongliangyou 206 6.67 1 HT
两优287 Liangyou 287 9.33 1 HT
五丰优623 Wufengyou 623 28.00 5 M
五丰优157 Wufengyou 157 26.00 5 M
五丰优286 Wufengyou 286 16.00 3 T
品种类型Variety type 品种Variety 死苗率Dead seedling rate (%) 耐冷性级别Grade 耐冷性评价Cold resistance evaluation
优I 651 You I 651 27.33 5 M
优I 2009 You I 2009 52.67 7 S
优I 125 You I 125 50.00 5 M
优I 2058 You I 2058 10.67 3 T
淦鑫203 Ganxin 203 21.00 5 M
荣优585 Rongyou 585 41.33 5 M
鄱优364 Poyou 364 34.67 5 M
庆丰优306 Qingfengyou 306 18.00 3 T
平均Mean 28.45 5 M
变幅The range of variation 5.33~54.00 1~7 HT~S
常规稻 湘早籼6号Xiangzaoxian 6 28.67 5 M
Conventional rice 中嘉早17 Zhongjiazao 17 56.00 7 S
中早25 Zhongzao 25 55.33 7 S
中早33 Zhongzao 33 23.33 5 M
中组3号Zhongzu 3 42.00 5 M
中佳早66 Zhongjiazao 66 39.33 5 M
中佳早29 Zhongjiazao 29 64.67 7 S
温229 Wen 229 67.33 7 S
平均Mean 47.08 5 M
变幅The range of variation 23.33~67.33 5~7 M~S

Table 2

Cold resistance coefficient of direct seeding indica rice varieties after low temperature stress"

品种
Variety
成苗率Seedling
rate
苗高Seedling
height
根长
Root
length
根数
Roots
地上部生物量
Aboveground biomass
per plant
根系生物量
Root biomass
per plant
根冠比
Root-shoot
ratio
株两优819 Zhuliangyou 819 0.70 0.54 0.61 0.82 0.80 0.73 0.92
株两优829 Zhuliangyou 829 0.61 0.32 0.59 0.42 0.65 0.58 0.91
株两优35 Zhuliangyou 35 0.64 0.51 0.67 0.49 0.51 0.37 0.74
株两优101 Zhuliangyou 101 0.85 0.37 0.73 0.58 0.43 0.61 1.45
株两优30 Zhuliangyou 30 0.71 0.37 0.79 0.32 0.58 0.86 1.47
株两优08 Zhuliangyou 08 0.90 0.44 0.66 0.39 0.50 0.60 1.21
株两优22 Zhuliangyou 22 0.82 0.52 0.78 0.61 0.59 0.40 0.68
株两优1号Zhuliangyou 1 0.95 0.39 0.73 0.61 0.77 0.51 0.67
陵两优611 Lingliangyou 611 0.57 0.45 0.87 0.49 0.65 0.76 1.16
陵两优211 Lingliangyou 211 0.72 0.51 0.82 0.25 0.70 0.58 0.80
陵两优0516 Lingliangyou 0516 0.92 0.49 0.83 0.33 0.71 0.46 0.65
陵两优32 Lingliangyou 32 0.50 0.59 1.11 0.72 0.76 0.25 0.30
陵两优942 Lingliangyou 942 0.64 0.50 0.69 0.61 0.83 0.91 1.06
陵两优7108 Lingliangyou 7108 0.96 0.49 0.93 0.57 0.51 0.62 1.18
陵两优7717 Lingliangyou 7717 0.58 0.39 0.63 0.47 0.61 0.77 1.27
陵两优722 Lingliangyou 722 0.75 0.35 0.82 0.34 0.29 0.28 0.99
品种
Variety
成苗率Seedling
rate
苗高Seedling
height
根长
Root
length
根数
Roots
地上部生物量
Aboveground biomass
per plant
根系生物量
Root biomass
per plant
根冠比
Root-shoot
ratio
锦两优816 Jinliangyou 816 0.62 0.44 1.43 0.57 0.69 0.84 1.23
陆两优996 Luliangyou 996 0.71 0.32 0.60 0.45 0.38 0.47 1.24
潭两优83 Tanliangyou 83 0.85 0.34 1.10 0.37 0.44 0.38 0.86
煜两优4156 Yuliangyou 4156 0.46 0.30 1.15 0.51 0.35 0.41 1.22
中两优206 Zhongliangyou 206 0.94 0.45 0.99 0.63 0.70 0.91 1.29
两优287 Liangyou 287 0.93 0.51 0.88 0.51 0.60 0.88 1.45
五丰优623 Wufengyou 623 0.75 0.47 0.50 0.41 0.66 0.51 0.77
五丰优157 Wufengyou 157 0.77 0.29 0.50 0.76 0.78 0.34 0.32
五丰优286 Wufengyou 286 0.91 0.58 0.76 0.47 0.75 0.55 0.72
优I 651 You I 651 0.76 0.42 0.48 0.36 0.44 0.47 1.06
优I 2009 You I 2009 0.48 0.54 0.90 0.51 0.54 0.52 0.99
优I 125 You I 125 0.53 0.41 0.46 0.48 0.50 0.41 0.81
优I 2058 You I 2058 0.92 0.50 0.82 0.55 0.87 0.68 0.72
淦鑫203 Ganxin 203 0.79 0.34 0.62 0.48 0.47 0.37 0.77
荣优585 Rongyou 585 0.61 0.56 1.19 0.47 0.68 0.74 1.09
鄱优364 Poyou 364 0.71 0.42 0.57 0.64 0.57 0.39 0.68
庆丰优306 Qingfengyou 306 0.85 0.54 1.26 0.50 0.56 0.57 1.02
湘早籼6号Xiangzaoxian 6 0.74 0.30 0.97 0.14 0.43 0.26 0.61
中嘉早17 Zhongjiazao 17 0.47 0.57 0.52 0.68 0.66 0.81 1.22
中早25 Zhongzao 25 0.46 0.40 1.14 0.39 0.57 0.69 1.22
中早33 Zhongzao 33 0.79 0.19 0.52 0.19 0.35 0.31 0.91
中组3号Zhongzu 3 0.60 0.43 0.78 0.39 0.37 0.32 0.85
中佳早66 Zhongjiazao 66 0.61 0.45 0.60 0.97 0.69 0.72 1.07
中佳早29 Zhongjiazao 29 0.36 0.35 0.63 0.20 0.44 0.51 1.15
温229 Wen 229 0.34 0.41 0.52 0.51 0.53 0.40 0.76
平均Mean 0.70 0.43 0.78 0.49 0.58 0.56 0.70

Table 3

Correlation coefficient matrix of traits"

指标
Index
成苗率
Seedling
rate
苗高
Seedling
height
根长
Root
length
根数
Roots
地上部生物量
Aboveground
biomass per plant
根系生物量
Root biomass
per plant
根冠比
Root-shoot
ratio
成苗率Seedling rate 1.000
苗高Seedling height 0.035 -1
根长Root length 0.046 -0.230 1.000
根数Roots -0.011 -0.398** -0.050 -1
地上部生物量Aboveground biomass per plant 0.141 -0.566** 0.049 -0.534** -1
根系生物量Root biomass per plant 0.056 -0.366* 0.175 -0.290 -0.501** 1
根冠比Root-shoot ratio -0.051 -0.060 0.170 -0.082 -0.265 0.684** 1

Table 4

Eigenvector, eigen value and contribution rates of each comprehensive index"

主成分Principle factor CI1 CI2 CI3
成苗率Seedling rate 0.13 -0.09 0.75
苗高Seedling height 0.76 -0.18 0.10
根长Root length 0.25 0.34 0.58
根数Roots 0.67 -0.32 -0.32
地上部生物量Aboveground biomass per plant 0.83 -0.37 0.01
根系生物量Root biomass per plant 0.76 0.57 -0.12
根冠比Root-shoot ratio 0.17 0.95 -0.15
特征值Eigen value 2.40 1.62 1.05
贡献率Contributive ratio (%) 34.22 23.19 14.96
累计贡献率Cumulative contributive ratio (%) 34.22 57.41 72.38

Fig.2

Cluster analysis map of D value of different direct-seeded early indica rice varieties"

Table 5

Comprehensive index value, index weight, μ(Xj), D value and comprehensive evaluation of varieties"

品种Variety CI1 CI2 CI3 μ(X1) μ(X2) μ(X3) D 综合评价Comprehensive evaluation
株两优819 Zhuliangyou 819 1.65 -0.78 -0.93 1.00 0.39 0.30 0.66 中度耐冷Moderate cold tolerance
株两优829 Zhuliangyou 829 -0.46 -0.07 -0.84 0.48 0.55 0.32 0.47 冷敏感Cold-sensitive
株两优35 Zhuliangyou 35 -0.35 -0.83 -0.24 0.51 0.37 0.47 0.46 冷敏感Cold-sensitive
株两优101 Zhuliangyou 101 -0.21 1.21 0.00 0.54 0.85 0.54 0.64 中度耐冷Moderate cold tolerance
株两优30 Zhuliangyou 30 0.13 1.87 -0.13 0.62 1.00 0.50 0.72 强耐冷Strong cold resistant
株两优08 Zhuliangyou 08 -0.18 0.66 0.58 0.55 0.72 0.69 0.63 中度耐冷Moderate cold tolerance
株两优22 Zhuliangyou 22 0.23 -1.15 0.61 0.65 0.30 0.70 0.55 中度耐冷Moderate cold tolerance
株两优1号Zhuliangyou 1 0.39 -1.19 0.85 0.69 0.29 0.76 0.57 中度耐冷Moderate cold tolerance
陵两优611 Lingliangyou 611 0.61 0.78 -0.56 0.74 0.75 0.39 0.67 中度耐冷Moderate cold tolerance
陵两优211 Lingliangyou 211 0.17 -0.26 0.75 0.63 0.51 0.73 0.61 中度耐冷Moderate cold tolerance
陵两优0516 Lingliangyou 0516 0.06 -0.92 1.58 0.61 0.35 0.95 0.60 中度耐冷Moderate cold tolerance
陵两优32 Lingliangyou 32 0.77 -2.32 0.17 0.78 0.03 0.58 0.50 冷敏感Cold-sensitive
陵两优942 Lingliangyou 942 1.54 0.18 -0.88 0.97 0.61 0.31 0.72 强耐冷Strong cold resistant
陵两优7108 Lingliangyou 7108 0.46 0.57 1.22 0.70 0.70 0.86 0.73 强耐冷Strong cold resistant
陵两优7717 Lingliangyou 7717 0.21 0.95 -1.17 0.64 0.79 0.24 0.61 中度耐冷Moderate cold tolerance
陵两优722 Lingliangyou 722 -1.63 0.31 0.63 0.19 0.64 0.70 0.44 冷敏感Cold-sensitive
锦两优816 Jinliangyou 816 1.21 1.38 0.73 0.89 0.89 0.73 0.86 强耐冷Strong cold resistant
陆两优996 Luliangyou 996 -1.10 0.77 -0.53 0.32 0.74 0.40 0.47 冷敏感Cold-sensitive
潭两优83 Tanliangyou 83 -0.98 0.15 1.63 0.35 0.60 0.96 0.56 中度耐冷Moderate cold tolerance
煜两优4156 Yuliangyou 4156 -1.07 1.20 -0.40 0.33 0.84 0.43 0.51 冷敏感Cold-sensitive
中两优206 Zhongliangyou 206 1.40 1.04 0.88 0.94 0.81 0.77 0.86 强耐冷Strong cold resistant
两优287 Liangyou 287 1.11 1.47 0.81 0.87 0.91 0.75 0.85 强耐冷Strong cold resistant
五丰优623 Wufengyou 623 -0.05 -0.83 -0.14 0.58 0.38 0.50 0.50 冷敏感Cold-sensitive
五丰优157 Wufengyou 157 -0.21 -2.45 -0.54 0.54 0.00 0.40 0.34 冷敏感Cold-sensitive
五丰优286 Wufengyou 286 0.85 -1.01 1.14 0.80 0.33 0.83 0.66 中度耐冷Moderate cold tolerance
优I 651 You I 651 -0.85 0.16 -0.23 0.38 0.60 0.48 0.47 冷敏感Cold-sensitive
优I 2009 You I 2009 0.24 0.09 -0.60 0.65 0.59 0.38 0.58 中度耐冷Moderate cold tolerance
优I 125 You I 125 -0.76 -0.64 -1.33 0.40 0.42 0.19 0.36 冷敏感Cold-sensitive
优I 2058 You I 2058 1.22 -0.90 1.03 0.89 0.36 0.81 0.70 强耐冷Strong cold resistant
品种Variety CI1 CI2 CI3 μ(X1) μ(X2) μ(X3) D 综合评价Comprehensive evaluation
淦鑫203 Ganxin 203 -0.99 -0.61 0.13 0.35 0.42 0.57 0.42 冷敏感Cold-sensitive
荣优585 Rongyou 585 1.10 0.71 0.55 0.86 0.73 0.68 0.78 强耐冷Strong cold resistant
鄱优364 Poyou 364 -0.24 -1.21 -0.51 0.53 0.29 0.41 0.43 冷敏感Cold-sensitive
庆丰优306 Qingfengyou 306 0.61 0.40 1.78 0.74 0.66 1.00 0.77 强耐冷Strong cold resistant
湘早籼6号Xiangzaoxian 6 -1.87 -0.32 1.44 0.13 0.49 0.91 0.41 冷敏感Cold-sensitive
中嘉早17 Zhongjiazao 17 1.26 0.34 -2.07 0.90 0.64 0.00 0.63 中度耐冷Moderate cold tolerance
中早25 Zhongzao 25 0.04 1.36 -0.28 0.60 0.88 0.47 0.66 中度耐冷Moderate cold tolerance
中早33 Zhongzao 33 -2.40 0.18 0.23 0.00 0.61 0.60 0.32 冷敏感Cold-sensitive
中组3号Zhongzu 3 -1.13 -0.16 -0.07 0.31 0.53 0.52 0.43 冷敏感Cold-sensitive
中佳早66 Zhongjiazao 66 1.30 -0.35 -1.79 0.91 0.48 0.07 0.60 中度耐冷Moderate cold tolerance
中佳早29 Zhongjiazao 29 -1.34 0.95 -1.46 0.26 0.79 0.16 0.41 冷敏感Cold-sensitive
温229 Wen 229 -0.70 -0.72 -2.01 0.42 0.40 0.02 0.33 冷敏感Cold-sensitive
权重Index weight 0.47 0.32 0.21
[1] 张露霞 . 水稻芽期耐冷性QTL定位与分析. 南京:南京农业大学, 2006.
[2] 王雨, 杨修, 李茂松 . 移栽期变化对黑龙江省水稻低温冷害的影响—以2002年为例. 自然灾害学报, 2017(S1):92-96.
[3] Nishiyama I . Effects of temperature on the vegetative growth of rice plants//Proceedings of the Symposium on Climate & Rice. Manila:IRRI, 1976: 159-185.
[4] 陆婷婷 . 水稻芽期耐冷性的QTL初步定位. 长沙:中南大学, 2012.
doi: 10.7666/d.y2198241
[5] 聂元元, 蔡耀辉, 颜满莲 , 等. 水稻低温冷害分析研究进展. 江西农业学报, 2011,23(3):63-66.
doi: 10.3969/j.issn.1001-8581.2011.03.019
[6] 韩龙植, 曹桂兰, 芮钟斗 , 等. 水稻芽期耐冷性与其他耐冷性状的相关关系. 作物学报, 2004,30(10):990-995.
doi: 10.3321/j.issn:0496-3490.2004.10.005
[7] Li T G, Visperas R M, Vergara B S . Correlation of cold tolerance at different growth stages in rice. Journal of Integrative Plant Biology, 2017(3):37-41.
[8] Kwack B H, Kim C . Induction of red discoloration in rice var. tongil with certain metabolic inhibitors. Korean Journal of Medicinal Crop Science, 1974,15:115-121.
[9] Report of a rice cold tolerance workshop. //Korea (South):International Rice Research Institute, 1979.
[10] Minorsky P V . An heuristic hypothesis of chilling injury in plants:a role for calcium as the primary physiological transducer of injury. Plant Cell & Environment, 1985,8(2):75-94.
doi: 10.1111/j.1365-3040.1985.tb01226.x
[11] 潘英华, 郑薇薇, 李金杰 , 等. 水稻耐冷性鉴定及定位研究概况. 中国农学通报, 2010,26(17):54-59.
[12] 肖宇龙, 钟家有, 胡启锋 , 等. 江西省早稻主栽品种可控条件下芽期耐冷性鉴定. 江西农业大学学报, 2014,36(2):243-248.
doi: 10.13836/j.jjau.2014038
[13] 黄永兰, 龙起樟, 丁芸 , 等. 江西省早稻品种芽期耐冷性鉴定评价研究. 江西农业大学学报, 2016,38(3):440-447.
[14] 张文英 . 农学实验与实习指导. 北京: 中国农业出版社, 2011.
[15] Liu H L, Sun S C, Wang J G , et al. Identification of cold tolerance of rice germplasm resource at germinating stagein cold region. Journal of Northeast Agricultural University, 2008,15(2):1-4.
[16] 谢志坚 . 农业科学中的模糊数学方法. 武汉: 华中理工大学出版社, 1983: 99-193.
[17] 田蕾, 陈亚萍, 刘俊 , 等. 粳稻种质资源芽期耐盐性综合评价与筛选. 中国水稻科学, 2017,31(6):631-642.
[18] 白志英, 李存东, 孙红春 , 等. 小麦代换系抗旱生理指标的主成分分析及综合评价. 中国农业科学, 2008,41(12):4264-4272.
[19] 韩龙植, 曹桂兰, 安永平 , 等. 水稻种质资源芽期耐冷性的鉴定与评价. 植物遗传资源学报, 2004,5(4):346-350.
doi: 10.3969/j.issn.1672-1810.2004.04.009
[20] 李霞, 戴传超, 程睿 , 等. 不同生育期水稻耐冷性的鉴定及耐冷性差异的生理机制. 作物学报, 2006,32(1):80-87.
doi: 10.3321/j.issn:0496-3490.2006.01.014
[21] 金铭路, 杨春刚, 余腾琼 , 等. 中国水稻微核心种质不同生育时期耐冷性鉴定及其相关分析. 植物遗传资源学报, 2009,10(4):540-546.
[22] 乔永利, 张媛媛, 安永平 , 等. 粳稻芽期耐冷性鉴定方法研究. 植物遗传资源学报, 2004,5(3):290-294.
doi: 10.3969/j.issn.1672-1810.2004.03.017
[23] 蒋敏, 张小祥, 吴政 , 等. 不同苗期施肥量对水稻机插秧秧苗生理及产量的影响. 中国农学通报, 2017,33(34):1-8.
[24] 于亚男 . 低温敏感突变体根尖基因表达谱分析. 杭州:浙江大学, 2015.
[25] 武辉, 侯丽丽, 周艳飞 , 等. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选. 中国农业科学, 2012,45(9):1703-1713.
doi: 10.3864/j.issn.0578-1752.2012.09.005
[26] 王树刚, 王振林, 王平 , 等. 不同小麦品种对低温胁迫的反应及抗冻性评价. 生态学报, 2011,31(4):1064-1072.
[27] 李志博, 曹连莆, 魏亦农 , 等. 荒漠绿洲区棉花幼苗耐寒生理特性及其评价指标分析. 棉花学报, 2010,22(6):568-573.
doi: 10.3969/j.issn.1002-7807.2010.06.009
[28] 刘海卿, 孙万仓, 刘自刚 , 等. 北方寒旱区白菜型冬油菜抗寒性与抗旱性评价及其关系. 中国农业科学, 2015,48(18):3743-3756.
doi: 10.3864/j.issn.0578-1752.2015.18.018
[1] Jiayan Sheng,Weiyang Zhang,Zhiqin Wang,Jianchang Yang. Mechanism and Regulation in Spikelet Degeneration of Rice [J]. Crops, 2019, 35(2): 20-27.
[2] Xiaojun Xiao,Weisheng Lü,Paolan Yu,Wei Zheng,Yazhen Li,Lei Hu,Fuliang Xiao,Shaowen Zhang,Tianbao Huang,Guobin Xiao. Effects of Nitrogen Application Rate on Yield Formation and Nitrogen Use Efficiency of Early Rice under Rape Straw Returning in Triple Cropping [J]. Crops, 2019, 35(2): 103-109.
[3] Xiaoming Yin,Chen Li. Differences in Leaf Photosynthesis and Assimilation of Nitrogen Between Two Rice Cultivars Differing in Nitrogen Use Efficiency [J]. Crops, 2019, 35(1): 90-96.
[4] Haibing Wu,Daohong Liu,Ming Zhong,Youyuan Wang. Effects of Water Management and Potash Application on Grain Yield and Lodging Resistance of Rice [J]. Crops, 2019, 35(1): 127-133.
[5] Cui Yanni,Zhan Junhui,Yan Pengqi,Ke Wenjing,Song Ningyuan,Zhang Zhongnan,Wang Liuhang,Huang Yan,Zhang Jing,Zhao Quanzhi. Effects of Different Application Proportion of Nitrogen Fertilizer on Grain-Filling Characteristics and Yield of Hybrid Indica Rice in Southern Henan Province [J]. Crops, 2018, 34(6): 103-109.
[6] Zhao Jinxing,Zhou Wei,Zhan Yingce,Li Yongjie,Gao Hongbo,He Songyu,Zhang Yuxian,Zhang Mingcong. Effects of a New Soil Ameliorants on Soil Physical Properties and Yield of Rice in Saline Meadow Soil [J]. Crops, 2018, 34(6): 138-143.
[7] Wang Fuhua,Xue Huazheng,Wang Ya,Wang Shengxuan,Wang Yuetao,Fu Jing,Yang Wenbo,Bai Tao,Li Junzou,Yin Haiqing. Breeding Fragrant Rice Zhengdao19 Using CRISPR/Cas9 Mediated Gene Editing Technology [J]. Crops, 2018, 34(6): 36-42.
[8] Ji Shengdong,Li Peng,Li Jiangwei,Song Liumin,Liu Miaomiao,Gao Kuanglong,Yin Haiqing. Analysis of Peroxidase Zymogram and Genetic Effects between Rice Lines and Their Parents During Grain Filling [J]. Crops, 2018, 34(5): 17-20.
[9] Ma Mengli,Zheng Yun,Zhou Xiaomei,Zhang Tingting,Zhang Xiaoqian,Lu Bingyue. Genetic Diversity Analysis of Red Rice from Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[10] Chen Yingying,Wangxu Yiling,Zhu Yuhan,Wu Wei,Liu Tao,Sun Chengming. Hyperspectral Estimation of Nitrogen Content in Rice Panicle [J]. Crops, 2018, 34(5): 116-120.
[11] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[12] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[13] Bo Zeng. Renovation of Main Cultivated Rice Varieties in China in the Past 30 Years [J]. Crops, 2018, 34(3): 1-7.
[14] Chen He,Guiping Zheng,Haicheng Zhao,Liqiang Chen,Hongyu Li,Yandong Lü,Jiang Song. Effects of Increasing Humic Acid but Reducing Fertilization on Panicle Traits and Yield of Rice in Saline-Alkali Soil [J]. Crops, 2018, 34(3): 129-134.
[15] Yong Cui. The Research Progress of Water-Dry Rotation Methods in Paddy Field [J]. Crops, 2018, 34(3): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .