Crops ›› 2020, Vol. 36 ›› Issue (2): 20-27.doi: 10.16035/j.issn.1001-7283.2020.02.004
Previous Articles Next Articles
Zhao Xunchao,Xu Jingyu(),Gai Shengnan,Wei Yulei,Xu Xiaoxuan,Ding Dong,Liu Meng,Zhang Jinjie,Shao Wenjing
[1] | 杨士春 . 甜高粱籽粒中脂肪酸含量的气相色谱分析. 中国粮油学报, 2012,27(11):100-104. |
[2] | 张国琴, 葛玉彬, 张正英 , 等. 高粱抗旱研究综述. 甘肃农业科技, 2018,56(6):67-72. |
[3] | O'Byrne D J, Knauft D A, Shireman R B . Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids, 1997,32(7):687-695. |
[4] | Carrillo C, Del M C M, Roelofs H , et al. Activation of human neutrophils by oleic acid involves the production of reactive oxygen species and a rise in cytosolic calcium concentration:a comparison with N-6 polyunsaturated fatty acids. Cellular Physiology and Biochemistry, 2011,28(2):329-338. |
[5] | 袁蕊, 敖宗华, 丁海龙 , 等. 高粱中脂肪酸和低分子有机酸气相色谱测定. 酿酒, 2011,38(4):42-43. |
[6] | Ohlrogge J, Browse J . Lipid biosynthesis. The Plant Cell, 1995,7(7):957-970. |
[7] | Xuan W Y, Zhang Y, Liu Z Q , et al. Molecular cloning and expression analysis of a novel BCCP subunit gene from Aleurites moluccana. Genetics and Molecular Research, 2015,14(3):9922-9931. |
[8] | Gonzalez-Thuillier I, Venegas-Caleron M, Sanchez R , et al. Sunflower (Helianthus annuus) fatty acid synthase complex:beta-hydroxyacyl-[acyl carrier protein] dehydratase genes. Planta, 2016,243(2):397-410. |
[9] | Rodriguez M F, Sanchez-Garcia A, Salas J J , et al. Characterization of soluble acyl-ACP desaturases from Camelina sativa,Macadamia tetraphylla and Dolichandra unguiscati. Journal of Plant Physiology, 2015,178(15):35-42. |
[10] | Li-Beisson Y, Shorrosh B, Beisson F , et al. Acyl-lipid metabolism. The Arabidopsis Book, 2013,11:e0161. |
[11] | Kachroo A, Shanklin J, Whittle E , et al. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Molecular Biology, 2007,63(2):257-271. |
[12] | Ruddle P N, Whetten R, Cardinal A , et al. Effect of a novel mutation in a △9-stearoyl-ACP-desaturase on soybean seed oil composition. Theoretical and Applied Genetics, 2013,126(1):241-249. |
[13] | Jung S, Tate P L, Horn R , et al. The phylogenetic relationship of possible progenitors of the cultivated peanut. Journal of Heredity, 2003,94(4):334-340. |
[14] | Knutzon D S, Thompson G A, Radke S E , et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proceedings of the National Academy of Sciences of the United States of America, 1992,89(7):2624-2628. |
[15] | Slocombe S P, Cummins I, Jarvis R P , et al. Nucleotide sequence and temporal regulation of a seed-specific Brassica napus cDNA encoding a stearoyl-acyl carrier protein (ACP) desaturase. Plant Molecular Biology, 1992,20(1):151-155. |
[16] | Shanklin J, Somerville C . Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proceedings of the National Academy of Sciences of the United States of America, 1991,88(6):2510-2514. |
[17] | McKeon T A, Stumpf P K . Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. The Journal of Biological Chemistry, 1982,257(20):12141-12147. |
[18] | Zhang Y, Maximova S N, Guiltinan M J . Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree,Theobroma cacao L. Frontiers in Plant Science, 2015,6:239-251. |
[19] | Lightner J, Wu J, Browse J . A mutant of Arabidopsis with increased levels of stearic acid. Plant Physiology, 1994,106(4):1443-1451. |
[20] | Osorio J, Fernándezmartínez J, Mancha M , et al. Mutant sunflowers with high concentration of saturated fatty acids in the oil. Crop Science, 1995,35(3):739-742. |
[21] | Craig W, Lenzi P, Scotti N , et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Research, 2008,17(5):769-782. |
[22] | Byfield G E, Xue H, Upchurch R G . Two genes from soybean encoding soluble Δ9 stearoyl-ACP desaturases. Crop Science, 2006,46(2):840-846. |
[23] | Murata N, Ishizaki-Nishizawa O, Higashi S , et al. Genetically engineered alteration in the chilling sensitivity of plants. Nature, 1992,356:710-713. |
[24] | Kodama H, Horiguchi G, Nishiuchi T , et al. Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves. Plant Physiology, 1995,107(4):1177-1185. |
[25] | Orlova I V, Serebriiskaya T S, Popov V , et al. Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant and Cell Physiology, 2003,44(4):447-450. |
[26] | Dong C G, Cao N, Zhang Z G , et al. Characterization of the fatty acid desaturase genes in cucumber:structure,phylogeny,and expression patterns. PLoS ONE, 2016,11(3):e0149917. |
[27] | Tocher D R, Leaver M J, Hodgson P A . Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Progress in Lipid Research, 1998,37(2/3):73-117. |
[28] | Han Y, Xu G, Du H , et al. Natural variations in stearoyl-acp desaturase genes affect the conversion of stearic to oleic acid in maize kernel. Theoretical and Applied Genetics, 2017,130(1):151-161. |
[29] | Shang X, Cheng C, Ding J , et al. Identification of candidate genes from the SAD gene family in cotton for determination of cottonseed oil composition. Molecular Genetics and Genomics, 2017,292(1):173-186. |
[30] | Merlo A O, Cowen N, Delate T , et al. Ribozymes targeted to stearoyl-ACP △9 desaturase mRNA produce heritable increases of stearic acid in transgenic maize leaves. Plant Cell, 1998,10:1603-1621. |
[1] | Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Analysis of the Characteristics of Dry Matter Production and Light Energy Utilization of Waxy Sorghum Applied in Different Eras in Guizhou Province [J]. Crops, 2020, 36(1): 41-46. |
[2] | Fan Xinqi,Wang Haiyan,Nie Meng′en,Zhao Xingkui,Zhang Yizhong,Yang Huiyong,Zhang Xiaojuan,Liang Du,Duan Yonghong,Liu Qingshan. Effects of EMS Mutagenesis on Emergence and Agronomic Traits in Sorghum [J]. Crops, 2020, 36(1): 47-54. |
[3] | Song Jian,Cao Xiaoning,Wang Haigang,Chen Ling,Wang Junjie,Liu Sichen,Qiao Zhijun. Identification and Expression Analysis of ASR Family Genes in Setaria italica [J]. Crops, 2019, 35(6): 33-42. |
[4] | Tang Taoxia,Wang Zhihe,Shi Zhiguo,Chang Ying,Zhang Yingying,Li Yanrong. Research on the Absorption of Heavy Metals by Different Genotypes in Sweet Sorghum [J]. Crops, 2019, 35(6): 50-56. |
[5] | Liang Xiaohong,Zhang Ruidong,Huang Minjia,Liu Jing,Cao Xiong. Interaction of Film Mulching and Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2019, 35(5): 135-142. |
[6] | Wang Jinsong,Dong Erwei,Jiao Xiaoyan,Wu Ailian,Bai Wenbin,Wang Lige,Guo Jun,Han Xiong,Liu Qingshan. Effects of Different Planting Patterns on Yield and Nutrient Absorption of Sorghum Jinnuo 3 [J]. Crops, 2019, 35(5): 166-172. |
[7] | Yue Linqi,Shi Weiping,Guo Jiahui,Guo Pingyi,Guo Jie. Response of Cutin Synthetic Genes of Foxtail Millet to Drought Stress [J]. Crops, 2019, 35(4): 183-190. |
[8] | Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Variation Analysis of Agronomic Traits of Waxy Sorghum Varieties (Lines) in Different Eras in Guizhou Province [J]. Crops, 2019, 35(4): 17-23. |
[9] | Yang Junkai,Shen Yang,Cai Xiaoxi,Wu Shengyang,Li Jianwei,Sun Mingzhe,Jia Bowei,Sun Xiaoli. Genome-Wide Identification and Expression Patterns Analysis of the PHD Family Protein in Glycine max [J]. Crops, 2019, 35(3): 55-65. |
[10] | Li Chunhong,Lu Xianglong,Zhang Peitong,Su Yanjing,Wang Yiming,Guo Wenqi,Yin Jianmei,Han Xiaoyong,Wang Li,Huo Enjie. Screening Herbicides to Control Weeds for Sweet Sorghum [J]. Crops, 2018, 34(6): 158-161. |
[11] | Lü Liangjie,Chen Xiyong,Zhang Yelun,Liu Qian,Wang Limei,Ma Le,Li Hui. Bioinformatics Identification of GASA Gene Family Expression Profiles in Wheat [J]. Crops, 2018, 34(6): 58-67. |
[12] | Zhang Yizhong,Zhou Fuping,Zhang Xiaojuan,Shao Qiang,Yang Bin,Liu Qingshan. Identification and Cluster Analysis of Photosynthetic Characters and WUE in Sorghum Germplasm [J]. Crops, 2018, 34(5): 45-53. |
[13] | Zhang Ruidong,Cao Xiong,Yue Zhongxiao,Liang Xiaohong,Liu Jing,Huang Minjia. Effects of Nitrogen and Density Interaction on Grain Yield and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2018, 34(5): 110-115. |
[14] | Zhang Jianhua,Guo Ruifeng,Cao Changlin,Fan Na,Jiang Baiyang,Li Guang,Shi Lijuan,Peng Zhidong,Bai Wenbin. Study on Effect and Safety of Controlling Weed in Sorghum Field by Several Stem and Leaf Treatment Herbicide [J]. Crops, 2018, 34(5): 162-166. |
[15] | Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum [J]. Crops, 2018, 34(4): 138-142. |
|