Crops ›› 2020, Vol. 36 ›› Issue (2): 82-87.doi: 10.16035/j.issn.1001-7283.2020.02.013

Previous Articles     Next Articles

Effects of Water and Fertilizer Integration and Chemical Control Measures after Flowering on Soybean Yield and Physiological Characteristics

Huang Junxia1,2,Huang Tian1,2,Rao Demin3,Zhang Minghao2,Meng Fangang2,Yan Xiaoyan2,Zhang Wei2()   

  1. 1 College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
    2 Institute of Soybean, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun 130033, Jilin, China
    3 College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Received:2019-08-19 Revised:2019-11-22 Online:2020-04-15 Published:2020-04-13
  • Contact: Wei Zhang E-mail:zw.0431@163.com

Abstract:

In this study, the effects of the integration of water and fertilizer and chemical control measures after flowering on the yield and physiological characteristics of super high-yielding soybean Jiyu 86 were studied by using the row planting mode. The results showed that the integration of water and fertilizer significantly increased soybean yield, R2+R4 (T3), R4+R5 (T4), R2+R4+R5 (T5) treatment increased yield the most, but the difference among the three treatments was not significant. The integration of water and fertilizer and chemical control further increased the yield of soybean. The yield of R2+R4+R5 water and fertilizer integration combined with chemical control treatment (T9) was the highest, reaching 3 780.4kg/hm 2, with an increase of 19.25% compared with the control. According to the comparison of the physiological characteristics of high yield between T5 and T9, T5 significantly increased SPAD value, photosynthetic parameters, leaf area index (LAI), biological yield per plant, plant height, stem weight and 100-seed weight. Compared with T5, T9 increased SPAD value and photosynthetic parameters, reduced plant height and LAI, effectively controlled lodging, promoted more reasonable development dynamics of LAI, promoted dry matter transfering from stem, leaf and petiole to seed, and finally increased seed weight and yield significantly. This indicates that water and fertilizer integration + chemical control is an effective measure to improve soybean yield potential. Water and fertilizer measures significantly increase pod weight per plant, seed weight per plant and 100-seed weight, while chemical control measures have no significant effect on 100-seed weight, and further increase pod weight per plant and seed weight per plant. Two or three times of water and fertilizer treatment after R2 stage and chemical control treatment at R1 stage is the best measure to improve yield.

Key words: Water and fertilizer integration, Chemical control, Soybean production, Physiological characteristics

Table 1

Different processing designs of water and fertilizer integration and chemical regulation"

处理
Treatment
水肥一体化处理时期
The period of water and
fertilizer integration
化控处理
Chemical regulation
T1 (CK) 未进行水肥处理
T2 盛花期(R2)
T3 R2、盛荚期(R4)
T4 R4、始粒期(R5)
T5 R2、R4、R5
T6 R2
T7 R2、R4
T8 R4、R5
T9 R2、R4、R5

Table 2

Meteorological conditions of the growing season in 2016-2017"

年份Year 项目Item 5月May 6月June 7月July 8月August 9月September
2016 月平均气温(℃) 15.6 19.6 23.1 22.3 16.1
月降水总量(mm) 128.4 131.0 124.2 133.2 107.7
2017 月平均气温(℃) 17.3 21.0 25.3 22.6 17.0
月降水总量(mm) 46.2 50.2 170.5 210.1 39.7

Fig.1

Effects of post-flowering water and fertilizer integration and chemical regulation on soybean yield Different lowercase letters indicate significant difference (P<0.05), the same below"

Table 3

Effects of post-flowering water and fertilizer integration and chemical regulation on soybean lodging"

处理Treatment 与地面倾斜角度Tilt to the ground (°)
T1 (CK) -
T2 -
T3 75.5
T4 67.3
T5 52.7
T6 -
T7 -
T8 -
T9 -

Fig.2

Effects of post-flowering water and fertilizer integration and chemical regulation on soybean SPAD value"

Fig.3

Effects of post-flowering water and fertilizer integration and chemical regulation on photosynthetic parameter of soybean"

Fig.4

Effects of post-flowering water and fertilizer integration and chemical control on soybean leaf area index"

Fig.5

Effects of post-flowering water and fertilizer integration and chemical regulation on soybean biological yield per plant at R6 stage Different lowercase letters in the figure indicate significant difference in the organs of the plant, different lowercase letters outside the figure indicate significant difference in biological yield per plant(P<0.05)"

Table 4

Effects of integration of water and fertilizer and chemical regulation on agronomic traits of soybean"

处理
Treatment
株高
Plant height (cm)
节数
Node number
茎重
Stem height (g)
单株荚重
Pod weight per plant (g)
单株粒重
Seed weight per plant (g)
百粒重
100-seed weight (g)
T1 (CK) 101.93±1.71c 21.67±0.33a 15.45±0.66b 35.32±1.75c 23.48±1.06c 21.97±0.59b
T5 114.42±1.69a 21.11±0.19a 18.33±0.84a 40.89±1.44b 26.72±1.26b 23.60±0.40a
T9 106.00±1.20b 21.67±0.88a 16.71±1.14ab 44.90±1.27a 29.25±1.04a 23.70±1.01a
[1] 裴宇峰, 韩晓增, 祖伟 , 等. 水氮耦合对大豆生长发育的影响:Ⅰ. 水氮耦合对大豆产量和品质的影响. 大豆科学, 2005(2):106-111.
[2] 李延国, 李建军, 任慧 , 等. 吉林省水肥一体化技术应用现状及发展前景探讨. 农业与技术, 2019,39(1):52-56.
[3] 郭培武, 赵俊晔, 石玉 , 等. 水肥一体化对小麦水分利用和光合特性的影响. 应用生态学报, 2019,30(4):1170-1178.
[4] 陈昱辛, 贾悦, 崔宁博 , 等. 滴灌水肥一体化对柑橘叶片光合、产量及水分利用效率的影响. 灌溉排水学报, 2018,37(S2):50-58.
[5] 黎会仙, 王文娥, 胡笑涛 , 等. 水肥一体化膜下滴灌水肥及速效氮分布特征研究. 灌溉排水学报, 2018,37(3):51-57.
[6] 廖常健 . 水氮耦合对花生养分吸收及生长发育的影响. 沈阳:沈阳农业大学, 2017.
[7] 高成平 . 水肥一体化技术对鲜食甜糯玉米生长特性与产量的影响. 农业与技术, 2019,39(2):37-38.
[8] 张红梅 . 水肥一体化对大棚土壤生态及黄瓜生长、产量和品质的影响. 中国园艺学会第八届黄瓜学术研讨会暨新品种展示观摩活动会议手册, 2018: 56.
[9] 陈环宇, 贾春青, 胡赵华 , 等. 水肥耦合对黄河三角洲盐碱地小麦根系形态和分布的影响. 中国农学通报, 2018,34(10):1-10.
[10] 霍昭光 . 水肥一体化技术对烤烟干物质积累和矿质养分吸收的影响. 郑州:河南农业大学, 2018.
[11] 张磊, 曾胜和, 陈云 , 等. 水肥一体化对新疆膜下滴灌水稻产量及养分利用的影响. 新疆农垦科技, 2017,40(11):33-36.
[12] 林鸾芳 . 膜下滴灌水肥一体化技术对水蜜桃产质量及经济效益的影响. 农业科技通讯, 2018(11):152-154.
[13] 黄卫东 . PP333——一种新的植物生长延缓剂. 园艺学报, 1988(1):27-32.
[14] 成华伟, 李广龙, 周君 , 等. 不同用量多效唑对滴灌大豆农艺性状与产量的影响. 新疆农业科技, 2012(5):17-18.
[15] 王美玲, 阚文亮, 宋喜清 , 等. 不同用量多效唑对垦鉴豆28生长的影响. 黑龙江农业科学, 2015(1):32-35.
[16] 孙化军, 张琪, 寇传喜 , 等. 多效唑不同用量对商豆6号性状及产量的影响. 农业科技通讯, 2012(6):93-95.
[17] 曾广文, 朱诚, 黄涛 , 等. 多效唑对大豆植株光合机构和光合速率的影响. 浙江农业大学学报, 1992(3):10-14.
[18] 王宝生, 刘春娟, 冯乃杰 , 等. 植物生长调节剂对大豆植株上、中部干物质积累及产量的影响. 南方农业学报, 2015,46(9):1567-1573.
[19] 王立峰, 张昆, 万勇善 , 等. 膜下滴灌水肥一体化施氮时期对花生叶片生理特性及产量的影响. 中国作物学会油料作物专业委员会第八次会员代表大会暨学术年会综述与摘要集, 2018: 242.
[20] 徐舶 . 水氮耦合对无芒雀麦产量形成和生理特性的影响. 通辽:内蒙古民族大学, 2015.
[21] 姜妍, 刘燕, 刘伟 , 等. 滴灌大豆氮素积累与分配的肥效差异. 中国油料作物学报, 2012,34(4):407-412.
[22] 龙波 . 种植密度和喷施多效唑对冬小麦倒伏及冠层光合的影响. 合肥:安徽农业大学, 2015.
[23] 张伟, 邱强, 赵婧 , 等. 不同化控调节剂对杂交大豆产量及产量相关性状的调控效应. 作物杂志, 2015(4):81-84.
[24] 赵婧, 张伟, 邱强 , 等. 不同时期喷施多效唑对大豆农艺及生理性状的影响. 大豆科学, 2011,30(2):211-214.
[25] 李思忠, 章建新, 李春艳 , 等. 滴灌大豆干物质积累、分配及产量分布特性研究. 中国农业大学学报, 2016,21(7):21-28.
[26] 魏建军, 罗赓彤, 张力 , 等. 中黄35超高产大豆群体的生理参数. 作物学报, 2009,35(3):506-511.
[1] Riyu Wen,Jianxia Liu,Zhenhua Zhang,Yaodong Guo,Xuyao Dai,Qingguo Jiang,Lisheng Fan. Effects of Drought Stress on Germination and Physiological Characteristics of Different Quinoa Seeds [J]. Crops, 2019, 35(1): 121-126.
[2] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures [J]. Crops, 2018, 34(4): 161-166.
[3] Suihua Huang,Haowen Luo,Xingge Huang,Pingshan Fan,Leilei Kong,Zhuojun Zhong,Xiangru Tang. Effects of Seeds Dressing Agent on Morphologyand Biochemical Characteristics of Direct-Sowing Rice Seeding [J]. Crops, 2018, 34(2): 171-176.
[4] Jianxia Liu,Xiaodan Zhang,Runmei Wang,Feng Zhou,Wenying Liu,Zhiping Liu. Effects of Seed Soaking with 6-BA on Germination and Physiological Characteristics of Mung Bean under Salt Stress [J]. Crops, 2018, 34(1): 166-172.
[5] Ping Lu,Chenggong Jin,Xi Zhang,Baiwen Jiang,Nannan Yan,Tongyu Xiao,Yamei Bai,Jingxin Li,Rui Chen,Jing Li. The Responses of the Ecophysiological Characteristics of Amaranthus retroflexus and Glycine max to Seasonal Rainfall Fluctuations [J]. Crops, 2017, 33(2): 114-120.
[6] Haowen Luo,Leilei Kong,Zhuojun Zhong,Luoya Xie,Xusheng Zhao,Ziqiu Lin,Xiangru Tang. Effects of Waterlogging Stress on the Rice Yuxiang Youzhan Growth and Physiological Characteristics of Seedlings [J]. Crops, 2017, 33(1): 135-139.
[7] Dongling Qin,Zhao Li,Juping Yu,Wenyi Yang,Bing Bai,Yulong Liu,Qian Zhang,Deguang Yang. Progress on Cold Resistance and Chemical Control Mechanism of Crops [J]. Crops, 2016, 32(4): 26-35.
[8] Kefei Cui,Huiping Dai,Jiani Zhu,Afang Zhang. Effects of Selenium Stress on the Physiological Characteristic of Medicago sativa L. [J]. Crops, 2016, 32(4): 133-136.
[9] Hezheng Wang,Huan Liu,Bei Li,Chenglong Sun,Bingbing Yin,Jun Zhang,Xinzhi Bao. Effects of Exogenous Substances on Physiological Characteristics in Wheat after Anthesis under Water Stress [J]. Crops, 2016, 32(3): 139-143.
[10] Hongliang Li,Yongshan Chai,Xiaobei Zhan,Li Zhu,Yuyou Sun,Caiqiang Wei,Zhong Xie,Weiwei Zhang,Dan Liu,Dujuan Cheng,Yuntong Zhao. Effects of β-1,3-Gluco-Oligosaccharide Foliar-Application on Rice Physiological Characteristics, Yield and Quality [J]. Crops, 2016, 32(2): 124-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures[J]. Crops, 2020, 36(2): 112 -118 .
[7] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[8] . [J]. Crops, 2020, 36(2): 200 -204 .
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[10] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .