Crops ›› 2020, Vol. 36 ›› Issue (4): 37-44.doi: 10.16035/j.issn.1001-7283.2020.04.006

Previous Articles     Next Articles

Analysis of Grain and Quality Traits of Chromosome Arm Substitution Lines of Triticum dicoccoides in the Background of Triticum aestivum

Wang Zhongqiu(), Ying Pengfei, Chen Mengtao, He Qiongying, Hu Xin()   

  1. School of Agriculture and Food Science, Zhejiang A & F University/Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Lin’an 311300, Zhejiang, China
  • Received:2019-11-11 Revised:2019-11-21 Online:2020-08-15 Published:2020-08-11
  • Contact: Hu Xin E-mail:1106977276@qq.com;huxin98@foxmail.com

Abstract:

To excavate the excellent genetic resources of wild emmer, the wild emmer chromosome arm substitution lines with the common wheat variety Bethlehem (BLH) as the genetic background was chosen. The yield related traits (grain length, grain width and 1000-grain weight) and quality related traits (protein content, wet gluten content, zeleny, starch content, and ash content) were investigated. The results showed that, the grain length of 3AL during two years was significantly longer than that of the parent BLH, suggesting at least one positive QTL for grain length on the 3AL chromosome arm of wild emmer. Similarly, at least three negative QTLs controlling grain length were located on 4BS, 6BL, and 7BL, respectively. At least 11 negative QTLs for 1000-grain weight were located on 2AS, 5AS, 6AL, 7AS, 1BS, 1BL, 4BS, 4BL, 5BL, 6BL and 7BL, respectively. At least six positive QTLs increasing protein content distributed on 6AL, 1BS, 2BS, 3BL, 7BS and 7BL, respectively. At least three positive QTLs responsible for wet gluten content were scattered at 2BL, 7BS and 7BL. At least three major QTLs controlling sedimentation value located at 4AL, 7AL and 7BL. Negative QTL site controlling starch content positioned at 7BL. QTL for ash content of wheat grain was on 7BL. Correlation analysis showed negative correlation between grain weight and protein content, wet gluten content, the zeleny and ash content, while the protein content was positively correlated with the wet gluten content, the zeleny, and the ash content and negatively correlated with starch content. Results showed that CASLs group are rich in genetic diversity, and each substitution lines only contains the chromosome arms corresponding to wild emmer, each of which has different genetic characteristics, so it can comprehensively utilize the favorable traits of the substitution lines.

Key words: Triticum dicoccoides, Chromosome arm substitution lines, Grain trait, Quality trait, Correlation analysis

Table 1

Genetic variation of grain traits and quality traits in wheat CASLs population"

性状Trait 年份
Year
亲本Parent BLH CASLs群体CASLs population
最小值Min 最大值Max 变幅Range 平均数Mean 变异系数Variable coefficient (%)
粒长Grain length (mm) 2018 6.80 5.90 7.30 1.40 6.50 4.60
2019 6.70 5.90 7.50 1.50 6.60 4.80
均值Mean 6.75 5.90 7.38 1.47 6.55 4.70
粒宽Grain width (mm) 2018 3.30 2.90 3.60 0.70 3.30 5.20
2019 3.20 2.80 3.70 0.90 3.20 6.80
均值Mean 3.25 2.86 3.66 0.81 3.25 6.00
千粒重1000-grain weight (g) 2018 42.13 32.20 44.70 12.50 38.83 7.30
2019 41.39 29.05 42.74 13.69 38.11 7.40
均值Mean 41.76 30.63 43.72 13.10 38.47 7.35
蛋白质含量Protein content (%) 2018 13.53 12.24 18.55 6.31 13.89 8.30
2019 13.43 12.38 16.99 4.61 13.73 6.60
均值Mean 13.48 12.31 17.77 5.46 13.81 7.45
湿面筋含量Wet gluten content (%) 2018 26.75 24.18 38.99 14.81 28.44 9.50
2019 27.45 24.20 35.87 11.67 28.04 7.40
均值Mean 27.10 24.19 37.43 13.24 28.24 8.45
沉降值Zeleny (mL) 2018 40.55 32.15 62.75 30.60 41.32 13.10
2019 40.99 32.43 51.65 19.22 40.63 9.90
均值Mean 40.77 32.29 57.20 24.91 40.98 11.50
淀粉含量Starch content (%) 2018 58.42 53.11 60.72 7.61 58.23 2.20
2019 58.25 53.12 61.56 8.44 58.35 2.60
均值Mean 58.34 53.12 61.14 8.03 58.29 2.40
灰分含量Ash content (%) 2018 0.51 0.48 0.56 0.08 0.51 3.40
2019 0.52 0.49 0.59 0.10 0.53 3.40
均值Mean 0.52 0.49 0.58 0.09 0.52 3.40

Fig.1

Differences in grain traits relative to parent in wheat CASLs population "*" indicates significant difference between the CASLs and the parent at 0.05 level. The same below"

Fig.2

Differences in quality traits relative to parent in wheat CASLs population"

Table 2

Correlation analysis among major traits"

2018年
In 2018
粒长
Grain length
粒宽
Grain width
千粒重
1000-grain weight
蛋白质含量
Protein content
湿面筋含量
Wet gluten content
沉降值
Zeleny
淀粉含量
Starch content
灰分含量
Ash content
2019年
In 2019
粒长 -1 -0.81** -0.61** -0.27* -0.26* -0.15 -0.27* -0.18 粒长
粒宽 -0.57** -1 -0.43** -0.25* -0.25* -0.15 -0.33** -0.20 粒宽
千粒重 -0.47** -0.41* -1 -0.48** -0.46** -0.39** -0.16 -0.28 千粒重
蛋白质含量 -0.18 -0.38* -0.47** -1 -0.96** -0.84** -0.68** -0.55** 蛋白质含量
湿面筋含量 -0.15 -0.39* -0.55** -0.96** -1 -0.87** -0.64** -0.56** 湿面筋含量
沉降值 -0.23* -0.12 -0.56** -0.88** -0.89** -1 -0.58** -0.45** 沉降值
淀粉含量 -0.20 -0.31* -0.27* -0.77** -0.77** -0.66** -1 -0.65** 淀粉含量
灰分含量 -0.17 -0.22 -0.33* -0.68** -0.67** -0.60** -0.63** -1 灰分含量
[1] 何中虎, 庄巧生, 程顺和 , 等. 中国小麦产业发展与科技进步. 农学学报, 2018,8(1):99-106.
[2] 2018/19年度全球粮食产量预计. 养猪, 2018(5):9.
[3] 孔欣欣, 张艳, 赵德辉 , 等. 北方冬麦区新育成优质小麦品种面条品质相关性状分析. 作物学报, 2016,42(8):1143-1159.
[4] 鞠兴荣, 袁建, 汪海峰 , 等. 小麦主要质量指标与面条品质关系的研究. 粮食与饲料工业, 2005(12):10-12.
[5] 李建勇, 王正银 . 小麦品质影响因素研究进展. 陕西农业科学, 2007(6):100-104.
[6] 高居荣, 樊广华, 李圣福 , 等. 近红外光谱技术分析小麦品质的应用研究. 实验技术与管理, 2009,26(3):42-44.
[7] 高居荣, 韩秀兰, 孙彩玲 , 等. DA7200近红外仪在小麦品质分析中的应用研究. 实验室科学, 2009(1):173-176.
[8] Chloupek O, Dostál V, Středa T , et al. Drought tolerance of barley varieties in relation to their root system size. Plant Breeding, 2010,129(6):630-636.
[9] Huang L, Raats D, Sela H , et al. Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annual Review of Phytopathology, 2016,54(1):279-301.
[10] Nevo E, Payne P I . Wheat storage proteins:diversity of HMW glutenin subunits in wild emmer from Israel. Theoretical and Applied Genetics, 1987,74(6):827-836.
[11] Zohary D . Wild genetic resources of crops in Israel. Israel Journal of Plant Sciences, 1983,32(2):97-127.
[12] Ahmadi H, Nazarian F . The inheritance and chromosomal location of morphological traits in wild wheat,Triticum turgidum L. ssp. dicoccoides. Euphytica, 2007,158(1/2):103-108.
[13] Millet E, Rong J K, Qualset C O , et al. Production of chromosome-arm substitution lines of wild emmer in common wheat. Euphytica, 2013,190(1):1-17.
[14] Feldman M, Millet E. Methodologies for indentification,allocetion and transer of quantitative genes from wild emmer wheat. Wheat Genet Symp. Beijing: Chinese Agricultural Scientific and Technological Press, 1995: 19-26.
[15] Millet E, Rong J K, Qualset C O , et al. Grain yield and grain protein percentage of common wheatlines with wild emmer chromosome-arm substitutions. Euphytica, 2014,195(1):69-81.
[16] Rong J K, Millet E, Manisterski J , et al. A new powdery mildew resistance gene:Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000,115(2):121-126.
[17] Pestsova E G, Andreas B, Marion S R . Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theoretical and Applied Genetics, 2006,112(4):634-647.
[18] Rong J . PPD-B1 of Triticum dicoccoides,the candidate gene of a major QTL responsible for the later heading of common wheat-wild emmer chromosome arm substitution line 2BS. San Diego:The Largest Ag-Genomics Meeting in the Word, 2014: 10-15.
[19] Lopes M S, Reynolds M P, Mcintyre C L , et al. QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico,in the West Asia,North Africa,and South Asia regions. Theoretical and Applied Genetics, 2013,126(4):971-984.
[20] Blanco A, Pasqualone A, Troccoli A , et al. Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Molecular Biology, 2002,48(5/6):615-623.
[21] Groos C, Robert N, Bervas E , et al. Genetic analysis of grain protein-content,grain yield and thousand-kernel weight in bread wheat. Theoretical and Applied Genetics, 2003,106(6):1032-1040.
[22] Perretant M R, Cadalen T, Charmet G , et al. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theoretical and Applied Genetics, 2000,100(8):1167-1175.
[23] Sourdille P, Perretant M R, Charmet G , et al. Detection of QTL for bread-making quality in wheat using molecular markers//Genetics and Breeding for Crop Quality and Resistance. Springer Netherlands, 1999: 361-366.
[24] Bogard M, Allard V, Martre P , et al. Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations. Molecular Breeding, 2012,31(3):587-599.
[25] Dholakia B B, Ammiraju J S S, Singh H, , et al. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding, 2010,122(5):392-395.
[26] 李志西, 魏益民, 张建国 . 小麦蛋白质组分与面团特性和烘烤品质关系的研究. 中国粮油学报, 1998,13(3):1-5.
[27] 丁安明, 李君, 崔法 , 等. 小麦关联RIL群体产量性状与品质性状的相关分析. 麦类作物学报, 2011,31(3):480-486.
[28] 蒋进, 蒋云, 王淑荣 . 四川省近年育成小麦品种农艺性状和品质性状分析. 麦类作物学报, 2019,39(6):682-691.
[29] 陈华萍, 魏育明, 郑有良 . 四川省的小麦地方品种品质分析. 植物遗传资源学报, 2006,7(1):89-94.
[1] Zhang Xiaoyan, Wang Xiaonan, Cao Kun, Sun Yufeng. Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines) [J]. Crops, 2020, 36(4): 121-126.
[2] Yang Bin, Yan Xue, Wen Hongwei, Wang Shuguang, Lu Lahu, Fan Hua, Jing Ruilian, Sun Daizhen. Study on the Evaluation of Stay-Green Traits of Wheat and Its Correlation with Yield-Related Traits under Different Water Conditions [J]. Crops, 2020, 36(4): 45-52.
[3] Wang Yanqing,Li Yongjun,Li Chunhua,Lu Wenjie,Sun Daowang,Yin Guifang,Hong Bo,Wang Lihua. Correlation and Path Analysis of the Main Agronomic Traits and Yield per Plant of Quinoa [J]. Crops, 2019, 35(6): 156-161.
[4] Liu Xingye,Xing Baolong,Wu Ruixiang,Wang Guimei,Liu Fei. Main Agronomic Traits Variation and Its Effects on Yield Composition of Mung Bean in Northern Shanxi Province [J]. Crops, 2019, 35(5): 69-75.
[5] Chen Guangzhou,Wang Guangfu,Qu Jianzhou,Si Leiyong,Jin Yan,Xu Shutu,Xue Jiquan,Lu Haidong. Study on Grain Dehydration Rate and Correlation Analysis of Major Related Characters in Different Maize Inbred Lines [J]. Crops, 2018, 34(5): 33-39.
[6] Wu Ronghua,Zhuang Kezhang,Liu Peng,Zhang Chunyan. Response of Summer Maize Yield to Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[7] Lili Zhang,Yizhou Zhao,Xin Li,Ting Mao,Yan Liu,Zhan Zhang,Shanjun Ni,Fucai Liu. Mutant Analysis on Quality Trait of Different Japonica Rice Progenies Induced by 60Co-γ Ray Irradiation [J]. Crops, 2018, 34(3): 51-56.
[8] Bin Zhang,Jinxiu Li,Zhen Wang,Hao Feng,Jinbang Li. Correlation and Cluster Analysis of Agronomic Traits in Wheat Lines [J]. Crops, 2018, 34(3): 57-60.
[9] Huijuan Tang,Gonggu Zang,Chaohua Cheng,Qing Tang,Yujun Li,Lining Zhao. Correspondence Analysis of Yield and Quality Traits of Industrial Hemp (Cannabis sativa L.) [J]. Crops, 2018, 34(2): 52-55.
[10] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines) [J]. Crops, 2018, 34(1): 77-82.
[11] Haihua Luo,Deyi Shao,Gong Chen,Xiumin Xu,Xin Gao,Changkai Yuan,Jinjian Peng,Feiyu Tang. Comparative Analysis of Trait Correlation between Conventional Varieties (Lines) and Hybrids of Cotton [J]. Crops, 2017, 33(5): 31-37.
[12] Jizhen Yu,Rui Wang,Pengjie Zhan,Jun'ai Ping,Fuyao Zhang. Diversity of Agronomic and Quality Traits of Major Sorghum Hybrids in China [J]. Crops, 2017, 33(5): 49-54.
[13] Huyi He,Guanning Tan,Xinmin He,Xin Yang,Zhouping Tang,Lishu Li. The Relationship and Cluster Analysis on Polysaccharides and Cellulose of Different Varieties of Dendrobium officinale [J]. Crops, 2017, 33(2): 29-33.
[14] Haitao Cheng,Zhaohui Ma,Guilin Liu,Ping Cao,Wenyan Lü. Canonical Correlation Analysis between RVA Profile Characteristics and Quality Traits of Japonica Rice Varieties [J]. Crops, 2017, 33(2): 59-66.
[15] Min Xu,Yushu Hu,Jinglin Li,Lulu Jin,Zisheng Wang. Clustering and Correlation Analysis of Earlier-Mauture Cotton Innovation Germplasm based on Biological Characters [J]. Crops, 2017, 33(1): 25-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!