Crops ›› 2021, Vol. 37 ›› Issue (5): 101-107.doi: 10.16035/j.issn.1001-7283.2021.05.015

Previous Articles     Next Articles

The Effects Analysis of Nitrogen, Phosphorus and Potassium Fertilization on Oat and Establishment of Yield Regression Model under Irrigation Condition

Zhang Pingzhen(), Zhang Kehou(), Chen Ying, Chen Jingping, Luo Jianke, Wang Zeyu   

  1. Baiyin Agricultural Science Research Institute, Baiyin 730900, Gansu, China
  • Received:2020-09-26 Revised:2021-08-18 Online:2021-10-15 Published:2021-10-14
  • Contact: Zhang Kehou E-mail:zpzbaiyin@163.com;kehou009@sina.com

Abstract:

This study aimed to investigate the formula fertilization effects of oat (Avena sativa) on nitrogen, phosphorus, potassium under the irrigation condition. We applied the “3414” test scheme to observe oat (Yinyan 6) yield and agronomic characters under the influence of different allocations of N, P, and K. To provide a scientific basis for the establishment of oat fertilization index system under irrigation condition, a regression model between fertilization and yield was established. The results showed that grain yield (5100.0kg/ha), fertilizer contribution rate (34.8%), and output value (20 400.0 yuan/ha) of N2P2K2 treatment were the highest among the 14 treatments. The yield increase effect of N, P, and K was N>P>K and there were obvious interactions among N, P, and K. The relationships between single fertilizer N, P, and K and grain yield were parabolic. According to the fitting function, the maximum N, P, and K application rates were 229.8, 80.5, and 26.4kg/ha, respectively. According to the effects of pure N, P2O5 and K2O application rates on grain yield, a three-factor fertilization mathematical model was established. Further analytical analysis showed that oat grain yield was ≥4950.0kg/ha when the ratio of N︰P2O5︰K2O fertilization was 1.54︰1︰0.23 and the fertilization range was 148.8-198.3kg/ha for N, >112.5kg/ha for P2O5, and 14.3-37.2kg/ha for K2O. The conclusion of this study had practical guiding significance for Avena sativa production under irrigation condition.

Key words: Avena sativa, “3414”fertilizer scheme, Grain yield, Irrigation, Fertilization

Table 1

The “3414” experimental scheme, fertilizer quantity and fertilizer cost"

处理
Treatment
纯养分用量Pure nutrient dosage (kg/hm2) 肥料施用量Fertilizer quantity(kg/hm2) 肥料成本(元/hm2
Fertilizer cost
(yuan/hm2)
N P2O5 K2O 尿素
Urea
普通过磷酸钙
Ordinary superphosphate
硫酸钾
Potassium carbonate
N0P0K0 0 0 0 0 0 0 0
N0P2K2 0 75.0 30 0 625.0 142.8 405.0
N1P2K2 67.5 75.0 30 146.7 625.0 142.8 567.0
N2P0K2 135.0 0 30 293.5 0 142.8 429.0
N2P1K2 135.0 37.5 30 293.5 312.5 142.8 579.0
N2P2K2 135.0 75.0 30 293.5 625.0 142.8 729.0
N2P3K2 135.0 112.5 30 293.5 937.5 142.8 879.0
N2P2K0 135.0 75.0 0 293.5 625.0 0 624.0
N2P2K1 135.0 75.0 15 293.5 625.0 71.4 676.5
N2P2K3 135.0 75.0 45 293.5 625.0 214.3 781.5
N3P2K2 202.5 75.0 30 440.2 625.0 142.8 891.0
N1P1K2 67.5 37.5 30 146.7 312.5 142.8 417.0
N1P2K1 67.5 75.0 15 146.7 625.0 71.4 514.5
N2P1K1 135.0 37.5 15 293.5 312.5 71.4 526.5

Table 2

Effects of combined fertilizers application on the yield, economic benefits and fertilizer contribution rate"

处理
Treatment
籽粒产量
Grain yield (kg/hm2)
产值(元/hm2
Output value (yuan/hm2)
增产
Increased yield (kg/hm2)
增收(元/hm2
Increased profit (yuan/hm2)
肥料贡献率
Fertilizer contribution rate (%)
N0P0K0 3 325.5i 13 302.0
N0P2K2 3 460.5hi 13 842.0 135.0 135.0 3.9
N1P2K2 3 683.4h 14 733.6 357.9 864.6 9.7
N2P0K2 4 394.4def 17 577.6 1 068.9 3 846.6 24.3
N2P1K2 4 505.6cde 18 022.4 1 180.1 4 141.2 26.2
N2P2K2 5 100.0a 20 400.0 1 774.5 6 369.0 34.8
N2P3K2 4 727.9bc 18 911.6 1 402.4 4 730.6 29.7
N2P2K0 4 427.9def 17 711.6 1 102.4 3 785.6 24.9
N2P2K1 4 688.9bc 18 755.6 1 363.4 4 777.1 29.1
N2P2K3 4 616.7cd 18 466.8 1 291.2 4 383.3 28.0
N3P2K2 4 911.2ab 19 644.8 1 585.7 5 451.8 32.3
N1P1K2 4 244.4f 16 977.6 918.9 3 258.6 21.6
N1P2K1 3 983.4g 15 933.6 657.9 2 117.1 16.5
N2P1K1 4 316.7ef 17 266.8 991.2 3 438.3 23.0

Fig.1

The fitted curve for grain yield and N, P, and K application rates"

Fig.2

Interactions of N, P and K application level"

Table 3

Sorting of coding combination results with objective yield ≥4950.0kg/hm2"

序号Number X1 X2 X3 产量Yield (kg/hm2)
1 3 3 0 5 583.8
2 3 3 1 5 575.3
3 3 3 2 5 452.2
4 3 3 3 5 214.4
5 2 3 2 5 050.9
6 2 3 1 4 997.3
7 2 3 3 4 989.9

Table 4

Coding statistics of fertilizer factors with oat target yield above 4950.0kg/hm2"

因素
Factor
X1 X2 X3
次数Times 频率Frequency (%) 次数Times 频率Frequency (%) 次数Times 频率Frequency (%)
0 0 0 0 0 1 14.3
1 0 0 0 0 2 28.6
2 3 42.9 0 0 2 28.6
3 4 57.1 7 100 2 28.6
次数合计Total times 7 7 7
平均编码值Average coding value 2.5714 3 1.7143
标准误差Standard error 0.1870 0 0.3894
编码范围Coding range 2.204<Y<2.938 Y<3 0.951<Y<2.477

Table 5

Economic characters and difference analysis of different treatments"

处理
Treatment
生育期
Growth period
(d)
株高
Plant height
(cm)
主穗长
Main panicle
length (cm)
小穗数
Spikelet
number
穗粒数
Grains per
spike
千粒重
1000-grain
wight (g)
成穗数
Panicle number
(×104/hm2)
倒伏率
Lodging rate
(%)
N0P0K0 85d 94.0f 15.5e 28.4d 35.6d 25.3a 411.5g 0e
N0P2K2 86cd 98.2e 16.0e 31.9abcd 35.8d 25.5a 417.5g 0e
N1P2K2 86cd 110.2d 17.3cd 31.2abcd 36.1cd 25.2a 445.5ef 0e
N2P0K2 89bc 115.8c 18.0bc 29.0d 38.2abc 24.7a 515.5cd 0e
N2P1K2 90ab 118.3bc 18.2abc 31.6bcd 38.6ab 24.2a 546.5bc 0e
N2P2K2 90ab 119.0bc 18.5ab 33.2ab 39.0ab 24.8a 586.0ab 0e
N2P3K2 90ab 120.5ab 19.2a 33.8a 39.7a 24.2a 550.5bc 0e
N2P2K0 90ab 118.8bc 18.0bc 32.0abc 39.2ab 23.0a 554.5abc 25.2b
N2P2K1 90ab 118.6bc 18.3abc 33.5ab 38.2abc 23.7a 575.8ab 10.9c
N2P2K3 91ab 118.5bc 18.0bc 34.1a 38.3abc 24.0a 566.3ab 0e
N3P2K2 93a 122.6a 17.5cd 32.9abc 39.1ab 23.5a 602.5a 30.5a
N1P1K2 86cd 108.5d 17.8bc 30.0cd 37.7bc 25.4a 495.5cd 0e
N1P2K1 86cd 110.3d 18.1abc 31.3abcd 38.0bc 25.0a 467.0ef 4.3de
N2P1K1 91ab 118.8bc 18.3abc 29.7cd 37.2bcd 25.5a 514.5cde 6.6d
[1] 李峰, 娜日娜, 生国利, 等. 燕麦增产丰收的措施. 中国农业信息, 2012(8):23-24.
[2] 黄相国, 葛菊梅. 燕麦(Avena sativa L.)的营养成分与保健价值探讨. 麦类作物学报, 2004, 24(4):147-149.
[3] 魏玉琴, 姜振宏. 甘肃省燕麦产业现状及发展途径. 甘肃农业, 2009(7):59-60.
[4] 杨晓虹, 杨才. 我国燕麦的产业化发展. 农产品加工创新版, 2012(7):20-21.
[5] 杨才, 周海涛, 张新军, 等. 对我国燕麦产业“一链三环九点”的发展战略解读. 作物杂志, 2014(2):1-4.
[6] 张克厚, 张平珍, 陈莺, 等. 水地燕麦银燕6号播种量与产量及主要农艺性状相关性研究. 甘肃农业科技, 2019(2):36-39.
[7] 张克厚, 陈莺, 张平珍, 等. 灌溉条件下燕麦不同品种的产量差异及与农艺性状的关系. 干旱地区农业研究, 2019, 37(6):166-170.
[8] 龚建军. 播种量和氮肥水平对燕麦倒伏和产量的影响. 兰州:甘肃农业大学, 2007.
[9] 高祥照, 马文奇, 杜森, 等. 我国施肥量中存在问题的分析. 土壤通报, 2001, 32(6):258-261.
[10] 孙义祥, 郭跃升, 于舜章, 等. 应用“3414”试验建立冬小麦测土配方施肥指标体系. 植物营养与肥料学报, 2009, 15(1):197-203.
[11] 马祥, 贾志锋, 刘文辉, 等. 青海地区燕麦“3414”施肥效果及推荐施肥量. 草业科学, 2017, 34(9):1906-1914.
[12] 吴志勇, 闫静, 施维新, 等. “3414”肥料效应试验的设计与统计分析. 新疆农业科学, 2008, 45(1):135-141.
[13] 李生秀. 植物营养与肥料学科的现状与展望. 植物营养与肥料学报, 1999, 5(3):193-205.
[14] 朱桂玉, 区惠平, 何佳, 等. 免耕水稻在“3414”实验方案中氮磷钾配施的肥料效应研究. 中国土壤与肥料, 2011(5):48-52.
[15] 杨才. 燕麦论. 北京: 农业出版社, 2005:124-127.
[16] 朱兆良. 推荐氮肥适宜施用量的方法论刍议. 植物营养与肥料学报, 2006, 12(1):1-4.
[17] 德科加, 周青平, 刘文辉, 等. 施氮量对青藏高原燕麦产量和品质的影响. 中国草地学报, 2007, 29(5):43-48.
[1] Zhang Ting, Zhang Bowen, Li Guolong, Cao Yang, Li Yue, Zhang Shaoying. Effects of Phosphorus Application Rate and Method on Photosynthetic Performance and Yield of Sugar Beet [J]. Crops, 2021, 37(5): 187-193.
[2] Zhang Shaoping, Geng Xiaoli, Wu Huijuan, Li Deming, Liu Qian, Gao Zhanqi. Breeding and Evaluating of Variety Characteristics of Avena sativa ‘Caoyan No.1’ [J]. Crops, 2021, 37(5): 219-224.
[3] Xue Jingfang, Cai Yongsheng, Chen Shuqiang. Effects of Water-Saving Irrigation Cultivation Model on Rice Quality and Starch RVA Profiles [J]. Crops, 2021, 37(4): 86-92.
[4] Liu Xuetong, Zheng Chunlian, Cao Wei, Dang Hongkai, Cao Caiyun, Li Xiaoshuang, Li Kejiang, Ma Junyong. Effects of Long-Term Located Fertilization on Soil Organic Matter, Nitrogen Forms and Crop Yields [J]. Crops, 2021, 37(4): 130-135.
[5] Liang Qian, Wu Qingshan, Ge Junzhu, Wu Xidong, Yang Yong’an, Hou Haipeng, Zhang Yao, Ma Zhiqi. Effects of Sowing Date on Rain-Fed Summer Maize Yield Formation and Resource Utilization in North China Plain [J]. Crops, 2021, 37(4): 136-143.
[6] Zhao Baoping, Liu Jinghui, Ren Changzhong. Research Progress of Physiological Mechanism of Yield Formation in Oats [J]. Crops, 2021, 37(3): 1-7.
[7] Qin Haixia, Zhang Yushun, Zhang Kun, Yang Haochen, Qiu Xinqiang, Wang Yanping, Lu Zhenguang, Zhang Mingzhi. Multi-Objective Optimization of Regulated Deficit Irrigation for Winter Wheat Based on TOPSIS in Huang-Huai-Hai Plain Well Irrigation Area [J]. Crops, 2021, 37(3): 202-209.
[8] Cao Xiaoyan, Wu Ailian, Wang Jinsong, Dong Erwei, Jiao Xiaoyan. Effects of Nitrogen Fertilization on Yield, Quality and Nitrogen Utilization Efficiency of Sorghum [J]. Crops, 2021, 37(2): 108-115.
[9] Liu Ping, Shao Caihong, Zhang Honglin, Liu Guangrong. Effects of Dry-Wet Alternate Irrigation on Double Cropping Rice Yield and Quality during Late Development Stage under Seasonal Rain Condition [J]. Crops, 2021, 37(2): 153-159.
[10] Liu Yan, Gong Liang, Xing Yuehua, Bao Hongjing. Study on the Optimization of Organic-Inorganic Fertilization Model for Maize Based on Orthogonal Design [J]. Crops, 2021, 37(1): 168-174.
[11] Shen Yong, Xie Hao, Pan Zhudong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Canopy Characteristics of the Rice Varieties Differing in Nitrogen Use Efficiency [J]. Crops, 2021, 37(1): 90-97.
[12] Wang Qi, Sun Wen, Wu Junying, Liu Jinghui, Zhao Baoping. Effects of Different Irrigation Amounts and Spraying Humic Acid on Photosynthetic Characteristics and Yield of Oat [J]. Crops, 2021, 37(1): 98-103.
[13] Zhao Jun, Sun Mingyue, Gao Xiang, Zhao Chengjuan, Cui Siping, Zhou Baoyuan, Guo Dong, Ma Wei. Application of the New Negative Pressure Irrigation Technology for Accurate Regulation Farmland Soil Moisture [J]. Crops, 2020, 36(6): 175-179.
[14] Hao Xiyu, Xiao Huanyu, Liang Jie, Wang Yingjie, Guo Wenyun. Effects and Optimum Rates of Nitrogen, Phosphorus and Potassium Fertilizer for Mung Bean [J]. Crops, 2020, 36(5): 127-132.
[15] Guo Xiaoheng, Wei Shuoguo, Wang Xiaoli, Xu Rui, Han Dan, Xu Zicheng. Effects of Different Types of Mulch Film and Irrigation Methods at Seedling Stage on Growth and Development of Tobacco in Xiangyang Mountain Area [J]. Crops, 2020, 36(5): 154-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!