Crops ›› 2021, Vol. 37 ›› Issue (1): 90-97.doi: 10.16035/j.issn.1001-7283.2021.01.013

Previous Articles     Next Articles

Canopy Characteristics of the Rice Varieties Differing in Nitrogen Use Efficiency

Shen Yong(), Xie Hao, Pan Zhudong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2020-08-21 Revised:2020-12-10 Online:2021-02-15 Published:2021-02-23
  • Contact: Yang Jianchang E-mail:sy226809@163.com;jcyang@yzu.edu.cn

Abstract:

Elucidating the canopy characteristics for nitrogen (N)-efficient rice varieties has great significance for screening N-efficient varieties. In this study, two N-efficient rice varieties Wuyunjing 30 and Lianjing 7 and two N-inefficient rice varieties Yangjing 4038 and Ningjing 1 were used and grown in the paddy field. The canopy characteristics of the two types of varieties and their relationships with grain yield and nitrogen use efficiency were investigated. Results showed that compared with N-inefficient varieties, N-efficient varieties had a higher grain yield and nitrogen use efficiency, mainly due to a larger number of total panicles and a greater filled-grain percentage, the N-efficient varieties showed greater stem-sheath weight per tiller, higher photosynthetic rate and photosynthetic nitrogen use efficiency (NUE), higher leaf thickness, specific leaf weight of the flag leaf, greater light interception rate in the middle and upper layer of a canopy, higher canopy top specific leaf N content, greater N extinction coefficient, better N-light matching degree, above-mentioned canopy traits were significantly and positively correlated with the grain yield and internal nitrogen use efficiency. These canopy traits could be considered as indexes for breeding and screening N-efficient rice varieties and for cultivating a population with high grain yield and high NUE.

Key words: Grain yield, Nitrogen use efficiency, Leaf thickness, Specific leaf weight, Light interception, Nitrogen extinction coefficient

Table 1

The growth period of tested varieties d"

品种
Variety
全生育期
Growth
period
移栽–抽穗
Transplanting-
heading
抽穗–成熟
Heading-
maturity
宁粳1号
Ningjing 1
155 71 56
武运粳30
Wuyunjing 30
154 70 58
扬粳4038
Yangjing 4038
151 70 55
连粳7号
Lianjing 7
156 69 61

Table 2

Leaf thickness, leaf width and leaf angle of the rice varieties differing in nitrogen use efficiency"

品种
Variety
叶厚Leaf thickness (mm) 叶宽Leaf width (mm) 叶角Leaf angle (°)
剑叶
Flag leaf
倒二叶
2nd leaf
倒三叶
3rd leaf
剑叶
Flag leaf
倒二叶
2nd leaf
倒三叶
3rd leaf
剑叶
Flag leaf
倒二叶
2nd leaf
倒三叶
3rd leaf
连粳7号Lianjing 7 0.293a 0.273b 0.287a 13.7a 11.6b 11.1a 15.1b 17.3b 17.4a
武运粳30 Wuyunjing 30 0.281a 0.306a 0.283a 13.3a 13.0ab 11.0a 16.0b 17.5b 17.1a
扬粳4038 Yangjing 4038 0.260b 0.254c 0.288a 14.8a 14.7a 12.8a 18.7a 17.8b 17.7a
宁粳1号Ningjing 1 0.264b 0.271b 0.286a 14.7a 13.4ab 11.7a 19.6a 19.2a 18.7a

Table 3

Dry matter weight of various organs of the rice varieties differing in nitrogen use efficiency g/m2"

品种
Variety
抽穗期Heading 成熟期Maturity
叶Leaf 茎鞘Stem-sheath 穗Panicle 叶Leaf 茎鞘Stem-sheath 穗Panicle
连粳7号Lianjing 7 329a 563a 356a 278a 727b 1 058a
武运粳30 Wuyunjing 30 324a 486b 365a 258a 791a 1 036a
扬粳4038 Yangjing 4038 343a 479b 341a 276a 693c 845b
宁粳1号Ningjing 1 336a 405c 339a 276a 674c 815b

Fig.1

Specific leaf area at different growth stages and specific leaf weight at the heading stage of top three leaves of rice varieties differing in nitrogen use efficiency Different small letters indicate significant difference between varieties (P < 0.05), NS: No significant difference, the same below"

Fig.2

Stem-sheath weight and leaf area per tiller of rice varieties differing in nitrogen use efficiency at heading stage"

Table 4

Nitrogen contents in various organs of the rice varieties differing in nitrogen use efficiency %"

品种
variety
抽穗期Heading 成熟期Maturity

Leaf
茎鞘
Stem- sheath

Panicle

Leaf
茎鞘
Stem- sheath

Panicle
连粳7号
Lianjing 7
1.27a 0.92c 1.20b 0.86b 0.53bc 1.03c
武运粳30
Wuyunjing 30
1.05c 1.01b 1.12c 0.82c 0.51c 0.98d
扬粳4038
Yangjing 4038
1.29a 1.12a 1.35a 0.91a 0.57a 1.11b
宁粳1号
Ningjing 1
1.15b 1.01b 1.20b 0.93a 0.57a 1.13a

Table 5

Nitrogen accumulation amounts in various organs of the rice varieties differing in nitrogen use efficiency kg/hm2"

品种
Variety
抽穗期Heading 成熟期Maturity

Leaf
茎鞘
Stem- sheath

Panicle

Leaf
茎鞘
Stem- sheath

Panicle
连粳7号
Lianjing 7
41.8ab 44.9c 42.7a 23.8ab 38.3a 109.0a
武运粳30
Wuyunjing 30
34.0c 56.9a 40.9b 21.0b 40.6a 102.0a
扬粳4038
Yangjing 4038
44.2a 45.4c 40.6b 25.2a 39.7a 93.8b
宁粳1号
Ningjing 1
38.6b 48.4b 40.7b 25.7a 38.7a 92.1b

Fig.3

Leaf photosynthetic rate, specific leaf N content, and photosynthetic NUE of rice varieties differing in nitrogen use efficiency"

Fig.4

Light interception rate and specific leaf N content in the canopy of rice varieties differing in nitrogen use efficiency at heading stage"

Table 6

Light and nitrogen matching degree of the rice varieties differing nitrogen use efficiency at heading stage"

品种Variety KL(m2/m2) KN(m2/m2) KN/KL N0(g/cm2)
连粳7号
Lianjing 7
0.346a 0.118a 0.347a 1.68a
武运粳30
Wuyunjing 30
0.347a 0.116a 0.340a 1.70a
扬粳4038
Yangjing 4038
0.355a 0.102b 0.287b 1.55b
宁粳1号
Ningjing 1
0.352a 0.098b 0.278b 1.53b

Table 7

Nitrogen use efficiency and nitrogen transfer of the tested rice varieties"

品种Variety 总吸氮量Total N uptake (kg/hm2) PFPN(kg/kg) IEN(kg/kg) HIN(%) NT(kg/hm2) NTE(%)
连粳7号Lianjing 7 165a 51.9a 56.7a 60.0a 29.1a 33.8a
武运粳30 Wuyunjing 30 163a 50.9a 56.3a 61.5a 29.3a 32.2a
扬粳4038 Yangjing 4038 158b 45.8b 52.2b 56.2b 22.6b 26.0c
宁粳1号Ningjing 1 155b 45.2b 52.5b 55.8b 24.7b 27.6b

Table 8

Grain yield and its components of the rice varieties differing in nitrogen use efficiency"

品种
Variety
产量
Yield (t/hm2)
穗数
Panicles
每穗粒数
Spikelets per panicle
总颖花数
Total spikelets (×103/m2)
结实率
Filled grain percentage (%)
千粒重
1000-grain weight (g)
连粳7号Lianjing 7 9.35a 257a 149a 38.2a 90.3a 28.2a
武运粳30 Wuyunjing 30 9.17a 252a 150a 37.8a 90.2a 27.3a
扬粳4038 Yangjing 4038 8.20b 247a 140b 34.6b 88.2b 28.2a
宁粳1号Ningjing 1 8.04b 250a 136b 34.0b 86.1b 27.3a

Table 9

Correlation coefficients of main canopy traits with the grain yield and IEN at the stages of heading and maturity"

生育期
Growth stage
冠层性状
Canopy trait
产量
Yield
IEN
成熟期 茎鞘含氮率 -0.898* -0.898*
Maturity 叶含氮率 -0.966* -0.977*
穗含氮率 -0.906* -0.899
抽穗期 单茎茎鞘重 -0.957* -0.985**
Heading 比叶面积 -0.916* -0.910*
光合氮素利用效率 -0.995** -0.973*
剑叶叶厚 -0.956* -0.965*
冠层顶部氮含量 -0.948** -0.966**
剑叶比叶重 -0.902* -0.831*
剑叶叶角 -0.995* -0.970*
L1L2光截获量 -0.956** -0.945**
光氮匹配度(KN/KL -0.988** -0.988**
氮消减系数(KN -0.899** -0.944**
[1] Haegele J W, Cook K A, Nichols D M, et al. Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades. Crop Science, 2013,53:1256-1268.
doi: 10.2135/cropsci2012.07.0429
[2] 余四斌, 熊银, 肖景华, 等. 杂交稻与绿色超级稻. 科学通报, 2016,61(35):3797-3803.
[3] Ju C X, Buresh R J, Wang Z Q, et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research, 2015,175:47-55.
doi: 10.1016/j.fcr.2015.02.007
[4] 袁隆平. 超级杂交稻. 中国水稻研究通报, 2000,8(1):13-14.
[5] Gu J F, Chen Y, Zhang H, et al. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Research, 2017,206:74-85.
[6] 孙旭初. 水稻叶型的类别及其与光合作用关系的研究. 中国农业科学, 1985,18(4):49-55.
[7] 刘贞琦. 不同株型水稻光合特性的研究. 中国农业科学, 1980,13(3):6-10.
[8] Yang J C, Zhang J H. Grain-filling problem in ‘super’ rice. Journal of Experimental Botany, 2010,61:1-5.
pmid: 19959608
[9] Villar R, Ruiz-Robleto J, Ubera J L, et al. Exploring variation in leaf mass per area (LMA) from leaf to cell:an anatomical analysis of 26 woody species. American Journal of Botany, 2013,100:1969-1980.
doi: 10.3732/ajb.1200562 pmid: 24107583
[10] Poorter H, Pothmann P. Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on ontogeny. New Phytologist, 1992,120:159-166.
doi: 10.1111/nph.1992.120.issue-1
[11] Winter H, Robinson D G, Heldt H W. Subcellular volumes and metabolite concentrations in barley leaves. Planta, 1993,191:180-190.
[12] Volkenburgh E V. Leaf expansion-an integrating plant behaviour. Plant Cell and Environment, 1999,22:1463-1473.
doi: 10.1046/j.1365-3040.1999.00514.x
[13] Sinclair T R, Horie T. Leaf nitrogen,photosynthesis,and crop radiation use efficiency:a review. Crop Science. 1989,29:90-98.
[14] Yin X Y, Lantinga E A, Schapendonk A H C M, et al. Some quantitative relationships between leaf area index and canopy nitrogen content and distribution. Annals of Botany, 2003,91(7):893-903.
doi: 10.1093/aob/mcg096 pmid: 12730071
[15] Peng S B, Cassman K G, Virmani S S, et al. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Science, 1999,39:1552-1559.
[16] 王建林, 徐正进. 穗型和行距对水稻冠层受光态势的影响. 中国水稻科学, 2005,19(5):422-426.
[17] Zhang W Y, Chen Y J, Wang Z Q, et al. Polyamines and ethylene in rice young panicles in response to soil drought during panicle differentiation. Plant Growth Regulation, 2017,82(3), 491-503.
doi: 10.1007/s10725-017-0275-2
[18] Landsberg J, Waring R. A generalised model of forest productivity using simplified concepts of radiation-use efficiency,carbon balance and partitioning. Forest Ecology and Management, 1997,95(3):209-228.
doi: 10.1016/S0378-1127(97)00026-1
[19] Xiong D, Yu T, Zhang T, et al. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. Journal of Experimental Botany, 2015,66:741-748.
pmid: 25429002
[20] 陈颖. 栽培措施对水稻产量和氮肥利用率的影响及其生理机制. 扬州:扬州大学, 2018.
[21] 杨建昌, 展明飞, 朱宽宇. 水稻绿色性状形成的生理基础. 生命科学, 2018,30(10):1137-1145.
[22] Wei H H, Yang Y L, Shao X Y, et al. Higher leaf area through leaf width and lower leaf angle were the primary morphological traits for yield advantage of japonica/indica hybrids. Journal of Integrative Agriculture, 2020,19(2):483-494.
doi: 10.1016/S2095-3119(19)62628-6
[23] Gu J F, Li Z K, Mao Y Q, et al. Roles of nitrogen and cytokinin signals in root and shoot communicatio-ns in maximizing of plant productivity and their agronomic applications. Plant Science, 2018,274:320-331.
doi: 10.1016/j.plantsci.2018.06.010 pmid: 30080619
[24] Roderick M L, Berry S L, Saunders A R, et al. On the relationship between the composition,morphology and function of leaves. Functional Ecology, 1999,13:696-710.
doi: 10.1046/j.1365-2435.1999.00369.x
[25] Sack L, Scoffoni C, McKown A D, et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 2012,3:837.
doi: 10.1038/ncomms1835 pmid: 22588299
[26] Sack L, Scoffoni C, John G P, et al. How do leaf veins influence the worldwide leaf economic spectrum Review and synthesis. Journal of Experimental Botany, 2013,64:4053-4080.
pmid: 24123455
[27] Sack L, Scoffoni C, John G P, et al. Leaf mass per area is independent of vein length per area:avoiding pitfalls when modelling phenotypic integration (reply to Blonder et al. 2014). Journal of Experimental Botany, 2014,65(18):5115-5123.
doi: 10.1093/jxb/eru305 pmid: 25118296
[28] Choong M F, Lucas P W, Ong J S Y, et al. Leaf fracture toughness and sclerophylly:their correlations and ecological implications. New Phytologist, 1992,121:597-610.
doi: 10.1111/nph.1992.121.issue-4
[29] Kawashima C, Matsumoto D, Ogawa A. The relationships between stomatal aperture and the crop growth rate,net assimilation rate,leaf area index and dry matter production in paddy rice. focused on the consequences of the water management protocol in Ohgata village. Crop Science, 2009,78(3):324-334.
[30] Anten N P R, Schieving F, Werger M J A. Pattern of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species. Oecologia, 1995,101(4):504-513.
pmid: 28306967
[31] 剧成欣. 不同水稻品种对氮素响应的差异及其农艺生理性状. 扬州:扬州大学, 2017.
[32] Casanova D, Epema G F, Goudriaan J. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crops Research, 1998,55(1/2):83-92.
doi: 10.1016/S0378-4290(97)00064-6
[33] O’Connell M G, O’Leary G J, Whitfield D M, et al. Interception of photosynthetically active radiation and radiation-use efficiency of wheat,filed pea and mustard in a semi-arid environment. Field Crops Research, 2004,85(2/3):111-124.
doi: 10.1016/S0378-4290(03)00156-4
[34] 敖和军, 方远祥, 熊昌明, 等. 株行距配置对超级杂交稻产量及群体光能利用的影响. 作物研究, 2008,22(4):263-269.
[35] Gimenez C, Connor D J, Rueda F. Canopy development,photosynthesis and radiation-use efficiency in sunflower in response to nitrogen. Field Crops Research, 1994,38(1):15-27.
doi: 10.1016/0378-4290(94)90028-0
[36] 杨国敏, 孙淑娟, 周勋波, 等. 群体分布和灌溉对冬小麦农田光能利用的影响. 应用生态学报, 2009,20(8):1868-1875.
[1] Cao Xiaoyan, Wu Ailian, Wang Jinsong, Dong Erwei, Jiao Xiaoyan. Effects of Nitrogen Fertilization on Yield, Quality and Nitrogen Utilization Efficiency of Sorghum [J]. Crops, 2021, 37(2): 108-115.
[2] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
[3] Zhang Gang, Zhang Shijie, Wang Dejian, Yu Yuanchun. Analysis of Yield and Economic Benefit of Straw Incorporation under Rice-Wheat Double Cropping System [J]. Crops, 2020, 36(6): 97-103.
[4] Zheng Di, Wen Chunyan, Shen Xianhua, Hu Biaolin, Che Jüqin, Xiong Yunhua, Wang Zhiquan, Wu Yanshou. Analysis on Variation in Rice Yield Components and Quality at Different Altitudes in Tibet [J]. Crops, 2020, 36(5): 199-203.
[5] Lü Guangde, Yin Fuwei, Sun Yingying, Qian Zhaoguo, Xu Jiali, Li Ning, Xue Lina, Wu Ke. Effects of Different Seeding Rates on Yield, Dry Matter Accumulation and Distribution of Linmai 4 [J]. Crops, 2020, 36(3): 142-148.
[6] Chen Diwen,Zhou Wenling,Ao Junhua,Huang Ying,Jiang Yong,Han Xihong,Qin Yimin,Shen Hong. Effects of Seaweed Extract on Yield, Quality and Nitrogen Use Efficiency of Sweet Corn [J]. Crops, 2020, 36(2): 134-139.
[7] Yang Zhichang,Shen Tao,Luo Zhuo,Peng Zhi,Hu Yuqian,Zi Tao,Xiong Tinghao,Song Haixing. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[8] Liu Meiju,Li Jiangzhou,Ji Sigui,Fan Miaomiao,Gu Xinghui,Zhang Limeng,Zhang Jinwei,Qu Xing,Zhou Wenbing,Lin Shan. Evaluation of Effect of Biochar on Tobacco Yield and Nitrogen Use Efficiency in Mountain Slope Areas [J]. Crops, 2020, 36(1): 89-97.
[9] Liang Xiaohong,Zhang Ruidong,Huang Minjia,Liu Jing,Cao Xiong. Interaction of Film Mulching and Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2019, 35(5): 135-142.
[10] Wang Yonggang,Ji Mingze,Zhao Xuhan,Yu Lihe,Xue Yingwen. Effects of Sowing Dates on Yield of Baiyan 7 in Midwest of Heilongjiang Province [J]. Crops, 2019, 35(3): 106-111.
[11] Xiaojun Xiao,Weisheng Lü,Paolan Yu,Wei Zheng,Yazhen Li,Lei Hu,Fuliang Xiao,Shaowen Zhang,Tianbao Huang,Guobin Xiao. Effects of Nitrogen Application Rate on Yield Formation and Nitrogen Use Efficiency of Early Rice under Rape Straw Returning in Triple Cropping [J]. Crops, 2019, 35(2): 103-109.
[12] Xiaoming Yin,Chen Li. Differences in Leaf Photosynthesis and Assimilation of Nitrogen Between Two Rice Cultivars Differing in Nitrogen Use Efficiency [J]. Crops, 2019, 35(1): 90-96.
[13] Jinghong Tan,Luping Zhang,Qixia Wu,Jianqiang Zhu,Zaizhen Zhang. Comparative Research on the Effects of Reducing Nitrogen from Different Fertilizers on Cotton [J]. Crops, 2019, 35(1): 134-140.
[14] Wang Xiaolin,Ji Xiaoling,Zhang Panpan,Zhang Xiong,Zhang Jing. Correlation Analysis between Aboveground Biomass Allocation and Grain Yield in Different Varieties of Foxtail Millet in the Dry Land of Loess Plateau [J]. Crops, 2018, 34(5): 150-155.
[15] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[2] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[3] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[4] Ying Chai,Yongqing Xu,Yao Fu,Xiuyu Li,Fumeng He,Yingqi Han,Zhe Feng,Fenglan Li. Characteristics of Cell Wall Degradation Enzyme Produced by Main Pathogenic Fusarium spp. in Potato Dry Rot[J]. Crops, 2018, 34(4): 154 -160 .
[5] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9"[J]. Crops, 2018, 34(4): 89 -94 .
[6] Zhengui Yuan,Pingping Chen,Lili Guo,Naimei Tu,Zhenxie Yi. Varietal Difference in Yield and Cd Accumulation and Distribution in Panicle of Rice Affected by Soil Cd Content[J]. Crops, 2018, 34(1): 107 -112 .
[7] Lu Zhao,Zhiwei Yang,Liqun Bu,Ling Tian,Mei Su,Lei Tian,Yinxia Zhang,Shuqin Yang,Peifu Li. Analysis and Comprehensive Evalution of Phenotypic Genetic Diversity of Ningxia and Xinjiang Rice Germplasm[J]. Crops, 2018, 34(1): 25 -34 .
[8] Shanshan Lu,Chenglai Wu,Yan Li,Chunqing Zhang. The Molecular Basis of Holding the Feature and Genetic Purity for Maize Inbred Lines[J]. Crops, 2018, 34(1): 41 -48 .
[9] Leiyue Geng,Wei Zhang,Tuo Zou,Zhenyu Zheng,Lige Geng,Juan Sun,Qixing Zhang. Analysis on Quality Traits Diversity of Rice Landraces in Hebei[J]. Crops, 2018, 34(1): 49 -55 .
[10] Yaoyan Li,Yanyan Pei,Shanyan Huang,Yingyan Zhang,Songji Wei,Yangjiao Xie,Qiong Zhou. Pharmacognosy of Zhongliuteng (Pileostegia tomentella Hand. Mazz) of Yao Medicine[J]. Crops, 2018, 34(1): 61 -65 .