Crops ›› 2022, Vol. 38 ›› Issue (4): 199-204.doi: 10.16035/j.issn.1001-7283.2022.04.028

Previous Articles     Next Articles

Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat

Zhou Jihong1(), Wang Junying1, Meng Fanyu1, Tong Guoxiang2, Mei Li1, Liu Guoming3, Wang Yan3, Luo Jun2, Xie Chunyuan2   

  1. 1Beijing Agricultural Technology Extension Station, Beijing 100029, China
    2Beijing Fangshan Agricultural Technology Extension Station, Beijing 102446, China
    3Beijing Shunyi Institute of Agricultural Sciences, Beijing 101300, China
  • Received:2021-04-10 Revised:2021-07-26 Online:2022-08-15 Published:2022-08-22

Abstract:

In order to define tillage methods and soil preparation on wheat seeding quality, yield and benefit, seven kinds of tillage methods, rotary tillage two times, deep loosening + rotary tillage, heavy harrow + rotary tillage, ploughing + light harrow, ploughing + rotary tillage, harrow tillage + ploughing + light harrow and heavy harrow + ploughing + rotary tillage (CK), were carried out. The results showed that among the seven tillage methods, the straw content of CK was less, and the straw contents of the soil surface and 0-20cm soil layer were 27.5% and 28.6% less than those of other treatments, respectively. The soil and straw were mixed evenly, and the soil bulk density per 5cm in 0-20cm soil layer was 30.5% lower than that in other treatments. The seeding depth was suitable with an average of 3.9cm. The emergence quality of seedlings was good, and ridge breaking of seedlings was reduced by 25.7% compared with other treatments. The seedlings dispersion was consistent, and the mean range shrank by 39.0%. CK treatment had the largest number of ears (6.705×106 per hectare), the best output (7966.5kg/ha), and the highest benefit (9051.0 yuan/ha), all of which were much higher than other treatments. Except for rotary tillage (two times) and deep loosening + rotary tillage, there was no significant yield difference among the other treatments in silage maize plot, but the tillage method of ploughing + rotary tillage had the highest yield of 8133.0kg/ha and the highest benefit of 9894.0 yuan/ha, the benefit was significantly higher than that of the other treatments.

Key words: Wheat, Ploughing and land preparation, Sowing quality, Yield, Benefit

Table 1

Change of soil straw contents under different tillage methods g"

处理
Treatment
地表
Land
surface
土层深度Soil depth
0~5cm 5~10cm 10~15cm 15~20cm
青贮玉米地Silage corn field
旋耕2次R 3.43 3.61 3.98 1.74 1.18
深松+旋耕DL+R 2.27 2.65 2.23 1.20 1.61
重耙+旋耕HH+R 2.08 1.61 1.58 1.54 1.22
翻耕+轻耙T+LH 0.73 1.43 1.38 1.29 1.10
翻耕+旋耕T+R 2.18 1.56 1.57 1.44 1.29
重耙+翻耕+轻耙
HH+T+LH
1.49 1.64 1.54 1.35 1.41
重耙+翻耕+旋耕(CK) 0.97 1.31 1.25 1.08 1.06
平均Mean 1.88 1.97 1.93 1.38 1.27
籽粒玉米地Grain corn field
旋耕2次R 9.42 12.14 11.75 3.82 3.25
深松+旋耕DL+R 10.23 13.75 10.52 4.43 5.04
重耙+旋耕HH+R 5.26 5.86 5.45 3.22 3.10
翻耕+轻耙T+LH 7.84 7.65 7.62 6.23 3.90
翻耕+旋耕T+R 5.31 4.87 4.80 4.76 3.56
重耙+翻耕+轻耙
HH+T+LH
5.22 5.47 3.95 3.55 3.75
重耙+翻耕+旋耕(CK) 5.23 5.28 3.97 3.98 3.73
平均Mean 6.93 7.86 6.87 4.28 3.76

Table 2

Soil moisture contents under different tillage methods %"

处理
Treatment
土层深度Soil depth
0~5cm 5~10cm 10~15cm 15~20cm
青贮玉米地Silage corn field
旋耕2次R 6.9 11.4 11.2 11.6
深松+旋耕DL+R 7.8 10.1 10.8 11.4
重耙+旋耕HH+R 6.5 10.6 10.9 11.7
翻耕+轻耙T+LH 5.5 10.7 11.5 14.6
翻耕+旋耕T+R 6.2 10.4 10.8 11.3
重耙+翻耕+轻耙HH+T+LH 5.6 10.6 11.2 11.5
重耙+翻耕+旋耕(CK) 5.6 10.5 11.1 11.4
平均Mean 6.3 10.6 11.1 11.9
籽粒玉米地Grain corn field
旋耕2次R 4.1 9.7 10.0 11.1
深松+旋耕DL+R 4.0 8.0 10.2 11.0
重耙+旋耕HH+R 4.8 8.5 10.1 10.5
翻耕+轻耙T+LH 5.0 8.4 10.3 11.0
翻耕+旋耕T+R 4.4 8.9 10.0 10.6
重耙+翻耕+轻耙HH+T+LH 4.6 8.8 10.3 10.5
重耙+翻耕+旋耕(CK) 4.7 8.7 10.7 11.1
平均Mean 4.5 8.7 10.2 10.8

Table 3

Changes of soil bulk density under different tillage methods g/cm3"

处理
Treatment
土层深度Soil depth
0~5cm 5~10cm 10~15cm 15~20cm
青贮玉米地Silage corn field
旋耕2次R 1.2 1.6 1.7 1.7
深松+旋耕DL+R 1.3 1.4 1.5 1.6
重耙+旋耕HH+R 1.3 1.4 1.5 1.5
翻耕+轻耙T+LH 1.0 1.5 1.6 1.7
翻耕+旋耕T+R 1.2 1.5 1.5 1.5
重耙+翻耕+轻耙HH+T+LH 1.3 1.5 1.6 1.7
重耙+翻耕+旋耕(CK) 1.2 1.5 1.6 1.6
平均Mean 1.2 1.5 1.6 1.6
籽粒玉米地Grain corn field
旋耕2次R 0.8 1.1 1.5 1.7
深松+旋耕DL+R 0.9 1.2 1.4 1.5
重耙+旋耕HH+R 0.9 1.3 1.4 1.5
翻耕+轻耙T+LH 1.0 1.1 1.3 1.4
翻耕+旋耕T+R 0.9 1.1 1.3 1.4
重耙+翻耕+轻耙HH+T+LH 1.0 1.1 1.3 1.4
重耙+翻耕+旋耕(CK) 0.9 1.1 1.2 1.3
平均Mean 0.9 1.1 1.3 1.5

Table 4

"

处理
Treatment
标准差
Standard
deviation
平均值
Average
变异系数
Coefficient of
variation (%)
极差
Range
青贮玉米地Silage corn field
旋耕2次R 2.9 21.3 13.53 5.0
深松+旋耕DL+R 3.2 18.7 17.22 6.0
重耙+旋耕HH+R 2.1 23.7 8.80 4.0
翻耕+轻耙T+LH 1.5 26.3 5.80 3.0
翻耕+旋耕T+R 1.0 26.0 3.85 2.0
重耙+翻耕+轻耙HH+T+LH 1.5 23.3 6.55 3.0
重耙+翻耕+旋耕(CK) 1.5 29.3 5.21 3.0
平均Mean 2.0 24.1 8.71 3.7
籽粒玉米地Grain corn field
旋耕2次R 5.8 21.3 27.06 10.0
深松+旋耕DL+R 5.9 21.7 27.04 11.0
重耙+旋耕HH+R 3.1 23.7 12.91 6.0
翻耕+轻耙T+LH 6.1 26.0 23.40 11.0
翻耕+旋耕T+R 3.1 20.3 15.02 6.0
重耙+翻耕+轻耙HH+T+LH 2.5 22.3 11.27 5.0
重耙+翻耕+旋耕(CK) 2.5 20.7 12.18 5.0
平均Mean 4.1 22.3 18.40 7.7

Table 5

Effects of different tillage methods on sowing depth, ridging and dead seedling and dead stem of wheat"

处理
Treatment
播深
Sowing depth
(cm)
缺苗断垄长度
The length of seedling shortage
and ridge breaking (cm)
缺垄断苗比例
The proportion of seedling
shortage and ridge breaking (%)
死苗率
Dead plants
proportion (%)
死茎率
Death stalks
proportion (%)
青贮玉米地Silage corn field
旋耕2次R 3.2 38.3 19.2 5.0 12.0
深松+旋耕DL+R 3.6 40.8 20.4 4.0 10.0
重耙+旋耕HH+R 4.0 36.1 18.1 3.5 10.0
翻耕+轻耙T+LH 4.1 33.0 16.5 2.0 7.0
翻耕+旋耕T+R 4.1 31.4 15.7 1.5 5.0
重耙+翻耕+轻耙HH+T+LH 4.0 28.6 14.3 0.5 5.0
重耙+翻耕+旋耕(CK) 4.2 18.3 9.2 1.0 3.0
平均Mean 3.9 32.4 16.2 2.5 7.4
籽粒玉米地Grain corn field
旋耕2次R 2.9 63.3 31.7 10.0 29.0
深松+旋耕DL+R 2.8 58.5 29.3 13.0 31.0
重耙+旋耕HH+R 3.3 45.3 22.7 13.0 26.0
翻耕+轻耙T+LH 3.5 51.8 25.9 2.0 7.5
翻耕+旋耕T+R 3.6 40.8 20.4 1.5 6.0
重耙+翻耕+轻耙HH+T+LH 3.8 28.8 14.4 1.5 7.0
重耙+翻耕+旋耕(CK) 3.9 35.8 17.9 1.6 5.0
平均Mean 3.4 46.3 23.2 6.1 15.9

Table 6

Effects of different tillage methods on wheat yield and benefit"

处理
Treatment
穗数
Ear number
(×104/hm2)
穗粒数
Grain number
per ear
千粒重
1000-grain
weight (g)
产量
Yield
(kg/hm2)
产值
(元/hm2
Output value
(yuan/hm2)
总成本
(元/hm2
Total cost
(yuan/hm2)
农机成本(元/hm2
Agricultural
machinery
cost (yuan/hm2)
效益
(元/hm2
Benefit
(yuan/hm2)
青贮玉米地Silage corn field
旋耕2次R 675.0c 29.8a 39.7a 6766.5c 1064.6 9150 1950 6819.0g
深松+旋耕DL+R 693.0c 29.4a 39.7a 6867.0bc 1080.4 9300 2100 6906.0f
重耙+旋耕HH+R 750.0ab 29.6a 39.3a 7434.0abc 1169.6 9150 1950 8394.0e
翻耕+轻耙T+LH 735.0b 30.4a 40.0a 7600.5ab 1195.8 9300 2100 8637.0d
翻耕+旋耕T+R 780.0a 30.3a 40.5a 8133.0a 1279.6 9300 2100 9894.0a
重耙+翻耕+轻耙HH+T+LH 781.5a 29.0a 39.5a 8005.5a 1259.5 9750 2550 9142.5c
重耙+翻耕+旋耕(CK) 771.0ab 30.6a 40.0a 8034.0a 1264.0 9750 2550 9210.0b
籽粒玉米地Grain corn field
旋耕2次R 577.5d 29.7bc 39.0ab 6675.0e 1050.2 9150 1950 6603.0g
深松+旋耕DL+R 592.5c 29.8bc 38.5b 6771.0de 1065.3 9300 2100 6679.5f
重耙+旋耕HH+R 592.5c 29.5bc 39.0ab 6822.0d 1073.3 9150 1950 6949.5e
翻耕+轻耙T+LH 595.5c 30.1ab 39.6a 7101.0c 1117.2 9300 2100 7458.0c
翻耕+旋耕T+R 594.0c 30.2ab 39.0ab 6996.0c 1100.7 9300 2100 7210.5d
重耙+翻耕+轻耙HH+T+LH 645.0b 29.3c 39.2ab 7405.5b 1165.1 9750 2550 7726.5b
重耙+翻耕+旋耕(CK) 670.5a 30.5a 38.9ab 7966.5a 1253.4 9750 2550 9051.0a
[1] 范文霞. 新疆塔城地区小麦生产全程机械化作业技术. 农业工程技术, 2020(9):63.
[2] 汪思胜. 小麦生产全程机械化实施特点与发展趋势. 农机使用与维修, 2019, 9(9):90-91.
[3] 白人朴. 农业机械化与农民增收. 农业机械学报, 2004, 35(4):179-182.
[4] 左娟, 毛瑞玲. 沿淮流域小麦规范化播种技术. 农业科技, 2018(21):49-51.
[5] 王博, 马根众, 蒋明波, 等. 山东小麦玉米机械化种植模式. 农业工程, 2020, 10(8):5-10.
[6] 杨丽, 张瑞, 刘全威, 等. 防堵和播深控制机构提高玉米免耕精量播种性能. 农业工程学报, 2016, 32(17):18-23.
[7] 牛萌萌, 方会敏, Chandio F A, 等. 秸秆分拨引导式玉米免耕防堵机构设计与试验. 农业机械学报, 2019, 50(8):52-58.
[8] 牛萌萌, 方会敏, 荐世春, 等. 黄淮海东部小麦玉米周年全程机械化生产现状. 农业工程, 2010, 10(10):1-7.
[9] 马根众. 山东麦玉轮作机艺结合的障碍因素与突破途径. 农机化研究, 2012, 34(1):242-245.
[10] 马根众, 王博, 于靖博, 等. 山东小麦全程机械化生产解决方案. 农业工程, 2020, 10(6):1-6.
[11] 鞠正春, 高瑞杰, 董庆裕. 小麦宽幅精播高产栽培技术. 北京: 中国农业出版社, 2018.
[12] 周吉红, 毛思帅, 王俊英, 等. 构建合理群体,因苗因墒科学管理,实现小麦高产高效. 作物杂志, 2015(4):109-114.
[13] 蒋方山, 张海军, 陈昱利, 等. 秸秆还田条件下耕作方式对冬小麦生长发育和产量的影响. 作物杂志, 2014(3):113-117.
[14] 张书良, 李文佼, 朱金英, 等. 耕作和播种方式对冬小麦生长发育和产量的影响. 安徽农业科学, 2020, 48(19):26-29.
[15] 李太魁, 马政华, 寇长林, 等. 不同耕作方式对砂姜黑土理化性质和小麦产量的影响. 中国农学通报, 2017, 33(36):20-24.
[16] 张向前, 杨文飞, 徐云姬. 耕作方式对主要粮食作物影响的研究综述. 农学学报, 2020, 10(8):23-27.
[1] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[2] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[3] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[4] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[5] Li Zujun, Jiang Xue, Yang Tonglian, Wu Chaoxin, Zhang Xichun, Jiang Xuehai, Long Wuhua, Zhang Yushan, Zhu Susong. Effects of Different Fertilizer Ratios on Yield and Taste Quality of Guizhouhe Goudang No.1 [J]. Crops, 2022, 38(4): 160-166.
[6] Ma Ke, Feng Lei, Zhao Xiatong, Zhang Liguang, Yuan Xiangyang, Dong Shuqi, Guo Pingyi, Song Xi’e. Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10 [J]. Crops, 2022, 38(4): 172-178.
[7] Zhao Shifeng, Cao Lixia, Shi Bihong, Liu Wenting, Zhao Xuefeng, Liu Junxin, Zhang Lixia, Li Jiahao. Dry Matter Accumulation and Productivity Potential Evaluation of Main Forage Oat Varieties in China [J]. Crops, 2022, 38(4): 179-186.
[8] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[9] Zhou Wuxian, Li Mengge, Tan Xuhui, Wang Youyuan, Wang Hua, Jiang Xiaogang, Duan Yuanyuan, Zhang Meide. Effects of Sowing Density on Growth, Nutritional Quality and Soil Enzyme Activity of Pinellia ternata in Different Seasons [J]. Crops, 2022, 38(4): 205-213.
[10] Qiao Yujia, Wei Ling, Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan. Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations [J]. Crops, 2022, 38(4): 221-226.
[11] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[12] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[13] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[14] Wang Xiaochun, Zhu Dexin, Yang Tianhui, Wang Chuan, Yang Weidi, Gao Ting, Liang Xiaojun. Correlation Analysis of Main Agronomic Characteristics of Different Alfalfa Varieties and Comparison of Hay Yield in Yellow River Irrigation Area of Ningxia [J]. Crops, 2022, 38(4): 32-36.
[15] Jian Juntao, Wang Qinghua, Yang Hui, Liu Jun, Zhu Chuanjie, Li Yupeng, Zhang Bin, Zhang Zhen, Quan Honglei, Xie Yanzhou, Wang Chengshe. Utilization of New Wheat Varieties (Lines) from Southern Huanghuai in Nanyang Basin-Transitional Ecological Area [J]. Crops, 2022, 38(4): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!