Crops ›› 2022, Vol. 38 ›› Issue (4): 205-213.doi: 10.16035/j.issn.1001-7283.2022.04.029

Previous Articles     Next Articles

Effects of Sowing Density on Growth, Nutritional Quality and Soil Enzyme Activity of Pinellia ternata in Different Seasons

Zhou Wuxian1(), Li Mengge2, Tan Xuhui1, Wang Youyuan2, Wang Hua1, Jiang Xiaogang1, Duan Yuanyuan1, Zhang Meide1()   

  1. 1Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, Hubei, China
    2Tianmen Academy of Agricultural Sciences, Tianmen 431700, Hubei, China
  • Received:2021-04-21 Revised:2021-07-09 Online:2022-08-15 Published:2022-08-22
  • Contact: Zhang Meide E-mail:zhou_wx222@163.com;emailtoecho@163.com

Abstract:

The objective of this research was to determine the effects of different sowing densities on yield, quality, and soil enzyme activity of Pinellia ternata through a field experiment with six sowing density treatments (2250, 3000, 3750, 4500, 5250 and 6000kg/ha) in different seasons to provide a scientific cultivation technology for P. ternata. The results showed that the plant height, leaf length, leaf width, and SPAD value of P. ternata were decreased with the increase of sowing densities in spring and autumn. The yield was first increased and then remained constant with the increase of sowing densities, while the yield increment was first increased and then decreased, and the maximum yield increment reached at a density of 3750kg/ha. The alkaloid, flavonoid, and protein contents (except alkaloid and flavonoid in spring) showed a decreasing trend with the increase of sowing densities, while soluble sugar showed an increasing trend in spring and autumn. In general, except soil alkaline phosphatase activity in autumn and urease activity in spring, the activities of soil alkaline phosphatase, urease, saccharase, and catalase showed an increasing trend with the increase of sowing densities. Overall, sowing densities had significant effects on the yield, quality, and soil enzyme activities of P. ternata in different seasons. The yield could reach the highest level when the P. ternata was harvested in autumn under the sowing density of 3750-4500kg/ha without affecting quality.

Key words: Pinellia ternata, Sowing density, Yield, Quality, Soil enzyme activity

Fig.1

Effects of different sowing densities on plant height, leaf characteristic and SPAD value of P. ternate Different lowercase letters indicate significant difference (P < 0.05) between different treatments, the same below"

Fig.2

Effects of different sowing densities on yield of P. ternata"

Fig.3

Effects of different sowing densities on quality of P. ternata"

Fig.4

Effects of different sowing densities on soil enzyme activities of P. ternata"

Table 1

Pearson correlation coefficients between sowing densities and morphological characteristics,yield, quality and soil enzyme activities of P. ternata in different growth stages"

时期Stage PH LL LW SPAD Y YI AKL FLV SP SS ALP URE SAC SCAT
春季Spring -0.642** -0.389 -0.419* -0.693** 0.947** -0.136 0.161 -0.099 -0.961** 0.656** 0.756** -0.544** 0.804** 0.615**
秋季Autumn -0.790** -0.741** -0.740** -0.889** 0.906** -0.160 -0.846** -0.785** -0.848** 0.762** -0.288 0.456* 0.785** 0.718**

Table 2

P-values from ANOVA testing effects of growth stage, sowing density and their interaction on P. ternata yield, quality and soil enzyme activities"

项目Item 自由度df Y YI AKL FLV SP SS ALP URE SAC SCAT
生长时期Growth stage 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
播种密度Sowing density 5 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
生长时期×播种密度Growth stage×sowing density 5 0.509 0.509 0.000 0.009 0.002 0.985 0.000 0.000 0.000 0.000

Fig.5

The redundancy analysis of growth trait, quality and soil enzyme activity of P. ternata in spring (a) and autumn (b)"

[1] 陈铁柱, 张美, 周先建, 等. 不同种植密度与种茎规格对半夏产量和质量的影响. 安徽农业科学, 2010, 38(31):17467-17468.
[2] 赵准, 李剑, 宋瑞娇, 等. 不同种植密度对大麦产量和青贮品质的影响. 作物杂志, 2020(1):110-116.
[3] 王晓娟, 何海军, 寇思荣, 等. 种植密度对不同品种青贮玉米生物产量和品质的影响. 草业科学, 2019, 36(1):169-177.
[4] 阮培均, 董恩省, 梅艳, 等. 栽培密度和施肥对半夏产量与总生物碱影响的研究. 中国农学通报, 2010, 26(15):190-194.
[5] 孙新荣, 仲彩萍, 张维彪. 锯末覆盖下半夏不同栽培密度试验研究. 陕西农业科学, 2015, 61(8):43-44.
[6] 王岩, 刘畅, 李云开, 等. 种植密度对滴灌马铃薯生长、产量的影响. 排灌机械工程学报, 2020, 38(1):90-94.
[7] 褚旭, 李帅, 赵亚南, 等. 施氮量和种植密度对玉米产量及磷钾吸收利用的影响. 中国农业科技导报, 2020, 22(12):115-126.
doi: 10.13304/j.nykjdb.2020.0271
[8] 王理德, 王方琳, 郭春秀, 等. 土壤酶学硏究进展. 土壤, 2016, 48(1):12-21.
[9] 张咏梅, 周国逸, 吴宁. 土壤酶学的研究进展. 热带亚热带植物学报, 2004(1):83-90.
[10] Wang Q K, Wang S L, Liu Y X. Responses to N and P fertilization in a young Eucalyptus dunnii plantation:Microbial properties,enzyme activities and dissolved organic matter. Applied Soil Ecology, 2008, 40(3):484-490.
doi: 10.1016/j.apsoil.2008.07.003
[11] Adamczyk B, Kilpeläinen P, Kitunen V, et al. Potential activities of enzymes involved in N,C,P and S cycling in boreal forest soil under different tree species. Pedobiologia, 2014, 57(2):97-102.
doi: 10.1016/j.pedobi.2013.12.003
[12] 王玉琴, 尹亚丽, 李世雄. 不同退化程度高寒草甸土壤理化性质及酶活性分析. 生态环境学报, 2019, 28(6):1108-1116.
[13] 孙慧, 张建锋, 胡颖, 等. 土壤过氧化氢酶对不同林分覆盖的响应. 土壤通报, 2016, 47(3):605-610.
[14] 国家药典委员会. 中华人民共和国药典. 一部. 北京: 中国医药科技出版社, 2020.
[15] 裴国平, 裴建文, 赵彦仓, 等. 北方半夏播种密度对产量及其构成因素的影响. 中国农机化学报, 2016, 37(8):252-255.
[16] 梅艳, 王海玲, 赵明勇, 等. 密度与肥料施用量对半夏繁殖产量的影响. 贵州农业科学, 2019, 47(11):121-124.
[17] 黄晓杨, 孙继成, 胡德风, 等. 潜半夏露地栽培不同密度试验. 安徽农学通报, 2016, 22(14):59-60.
[18] 梅艳, 赵明勇, 阮培均, 等. 喀斯特温凉气候区半夏种植密度与施肥试验. 湖北农业科学, 2011, 50(12):2499-2502.
[19] 王海玲, 王孝华, 阮培均, 等. 喀斯特温和气候区半夏优化栽培模式研究. 中国农学通报, 2012, 28(10):271-276.
[20] 赵明勇, 阮培均, 梅艳, 等. 喀斯特温凉气候区半夏高产栽培技术优化研究. 作物杂志, 2012(3):93-98.
[21] 周武先, 张美德, 王华, 等. 有机肥替代部分化肥结合外源硒对白术的促生作用. 农业资源与环境学报, 2021, 38(3):457-465.
[22] 张楠, 郭春延, 薛晶晶, 等. 半夏生物碱提取方法及抗氧化性研究. 实验技术与管理, 2019, 36(8):61-64.
[23] 何书美, 刘敬兰. 茶叶中总黄酮含量测定方法的研究. 分析化学, 2007(9):1365-1368.
[24] 张楠. 半夏块茎品质及其影响因素研究. 保定:河北大学, 2019.
[25] 关松荫. 土壤酶及其研究方法. 北京: 农业出版社, 1986.
[26] 段媛媛, 刘晓洪, 吴佳奇, 等. 间作模式对黄连生理生长性状及根际土壤理化性质的影响. 生态学杂志, 2020, 39(11):3676-3685.
[27] Zhou W X, Duan Y Y, Zhang Y J, et al. Effects of foliar selenium application on growth and rhizospheric soil micro-ecological environment of Atractylodes macrocephala Koidz. South African Journal of Botany, 2021, 137:98-109.
doi: 10.1016/j.sajb.2020.09.032
[28] Harper J L. Population Biology of Plants. London: Academic Press, 1977:151-236.
[29] 马晓君, 路明远, 李兰, 等. 种植密度对川中丘区夏玉米冠层结构、干物质积累及产量的影响. 生态学杂志, 2018, 37(3):891-897.
[30] 冯银平, 沈海花, 罗永开, 等. 种植密度对苜蓿生长及生物量的影响. 植物生态学报, 2020, 44(3):248-256.
doi: 10.17521/cjpe.2019.0157
[31] Kira T, Ogawa H, Sakazaki N. Intraspecific competition among higher plants I. Competition-yield-density interrelationship in regularly dispersed population. Journal of the Institute of Polytechnics,Series D, 1953, 4:1-16.
[32] Iwassa K, Moriyasu M, Tachibana Y, et al. Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial,antimalarial,cytotoxic,and anti-HIV agents. Bioorganic and Medicinal Chemistry, 2001, 9:2871-2884.
doi: 10.1016/S0968-0896(01)00154-7
[33] Račková L, Májeková M, Košt’álová D, et al. Antiradical and antioxidant activities of alkaloids isolated from Mahonia aquifolium. Structural aspects. Bioorganic and Medicinal Chemistry, 2004, 12:4709-4715.
doi: 10.1016/j.bmc.2004.06.035
[34] Francisco P V, Cesar G, Fraga D E. Research trends in flavonoids and health. Archives of Biochemistry and Biophysics, 2018, 646:107-112.
doi: 10.1016/j.abb.2018.03.022
[35] Tian W T, Zhang X W, Liu H P, et al. Structural characterization of an acid polysaccharide from Pinellia ternata and its induction effect on apoptosis of Hep G2 cells. International Journal of Biological Macromolecules, 2020, 153:451-460.
doi: 10.1016/j.ijbiomac.2020.02.219
[36] 阮培均, 董恩省, 梅艳, 等. 栽培措施对半夏产量及质量的影响. 贵州农业科学, 2012, 40(10):54-57,60.
[37] 张跃进, 孟祥海, 杨东风, 等. 不同光照强度下半夏化学成分含量的比较研究. 植物科学学报, 2009, 27(5):533-536.
[38] 查菲娜, 马冬云, 郭天财, 等. 不同种植密度条件下两种穗型冬小麦品种根际土壤酶活性的动态变化. 水土保持学报, 2007, 21(2):104-107.
[39] Zang H D, Yang X C, Feng X M, et al. Rhizodeposition of nitrogen and carbon by mungbean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.). PLoS ONE, 2015, 10(3):e0121132.
doi: 10.1371/journal.pone.0121132
[40] 冯慧芳, 余明, 薛立. 外源性氮磷添加及林分密度对大叶相思林土壤酶活性的影响. 生态学报, 2020, 40(14):4894-4902.
[1] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[2] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[3] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[4] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[5] Li Zujun, Jiang Xue, Yang Tonglian, Wu Chaoxin, Zhang Xichun, Jiang Xuehai, Long Wuhua, Zhang Yushan, Zhu Susong. Effects of Different Fertilizer Ratios on Yield and Taste Quality of Guizhouhe Goudang No.1 [J]. Crops, 2022, 38(4): 160-166.
[6] Ma Ke, Feng Lei, Zhao Xiatong, Zhang Liguang, Yuan Xiangyang, Dong Shuqi, Guo Pingyi, Song Xi’e. Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10 [J]. Crops, 2022, 38(4): 172-178.
[7] Zhao Shifeng, Cao Lixia, Shi Bihong, Liu Wenting, Zhao Xuefeng, Liu Junxin, Zhang Lixia, Li Jiahao. Dry Matter Accumulation and Productivity Potential Evaluation of Main Forage Oat Varieties in China [J]. Crops, 2022, 38(4): 179-186.
[8] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[9] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
[10] Qiao Yujia, Wei Ling, Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan. Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations [J]. Crops, 2022, 38(4): 221-226.
[11] Liu Xinya, Chen Xiaolong, Feng Yake, Liu Yang, Duan Weidong, An Xueqiang, Chen Fayuan, Cao Xingbing, Zhao Yuanyuan, Shi Hongzhi. Study on the Suitable Harvest Date of High Availability Upper Leaves of Flue-Cured Tobacco in Southwestern Guizhou [J]. Crops, 2022, 38(4): 227-235.
[12] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[13] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[14] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[15] Wang Xiaochun, Zhu Dexin, Yang Tianhui, Wang Chuan, Yang Weidi, Gao Ting, Liang Xiaojun. Correlation Analysis of Main Agronomic Characteristics of Different Alfalfa Varieties and Comparison of Hay Yield in Yellow River Irrigation Area of Ningxia [J]. Crops, 2022, 38(4): 32-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!