Crops ›› 2022, Vol. 38 ›› Issue (5): 1-12.doi: 10.16035/j.issn.1001-7283.2022.05.001

    Next Articles

Advances in Research on Salt Tolerance Mechanism of Plants

Wang Hanxiang(), Li Guangcun, Xu Jianfei, Wang Wanxing(), Jin Liping()   

  1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology andGenetic Improvement of Root and Tuber Crops, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2021-07-23 Revised:2021-09-13 Online:2022-10-15 Published:2022-10-19

Abstract:

High salinity is one of the most important abiotic stresses limiting crop growth and production. Excessive salt ions in soil cause osmotic, ionic and oxidative stress to plant cells. Plants respond to stress signals by activating ascorbic acid and salt overly sensitive pathways to maintain ion homeostasis and osmotic balance as well as antioxidant systems to combat excessive reactive oxygen species. In this review, we summarize the research progress on the components, pathways and regulatory mechanisms of salt stress responses in plants from the aspects of signal transduction, biosynthesis of osmoprotectants and solutes, ion homeostasis and regionalization, antioxidant system and plant hormone regulation. It can help researchers develop high-yield and high-quality crops under stress conditions.

Key words: Salt stress, Salt tolerance mechanism, Ion transport, Antioxidation system

Fig.1

Stress signal transduction in plants"

Fig.2

Schematic diagram of ionic separation"

Table 1

Antioxidant enzymes and antioxidant reaction equation"

抗氧化酶
Antioxidase
酶编号
Enzyme number
反应式
Reaction equation
SOD EC 1.15.1.1 O2-+O2-+2H+→2H2O2+O2
CAT EC 1.11.1.6 2H2O2→2H2O+O2
APX EC 1.11.1.11 H2O2+AA→2H2O+DHA
GPX EC 1.11.1.7 H2O2+GSH→H2O+GSSG
MDHAR EC 1.6.5.4 MDHA+NAD(P)H→AA+NAD(P)+
DHAR EC 1.8.5.1 DHA+2GSH→AA+GSSG
GR EC 1.6.4.2 GSSG+NAD(P)H→2GSH+NAD(P)+

Table 2

Reactive oxygen scavenging enzymes and their roles in salt resistance of transgenic plants"

名称
Name
来源
Source
目标作物
Target crop
转基因作物表现
Transgenic crop performance
参考文献
Reference
SOD
Mn-SOD
拟南芥
拟南芥
过表达Mn-SOD拟南芥表现出更强的耐盐性,同时增强了其他抗氧化酶活性。 [54]
TaSOD1.1/1.2

小麦

烟草

过表达TaSOD1.1/1.2基因烟草SOD活性显著提高,丙二醛含量明显降低。转基因植株的叶绿素a、叶绿素b和类胡萝卜素含量升高,可溶性糖和可溶性蛋白含量也相应升高。 [55]

TaSOD2
小麦
小麦、
拟南芥
盐胁迫下过表达TaSOD2植株降低了体内H2O2水平,但增加了O2-水平,同时增强了植株体内H2O2代谢酶和O2-制造酶NOX活性。 [56]
PaSOD;RaAPX
暗红委陵菜、
藏边大黄
拟南芥
与野生型相比,PaSOD和双转基因株系维管束木质素沉积增强,转基因植株的盐胁迫长势、生物量和产量均好于野生型。 [57]
CAT
CsCAT3 黄瓜 拟南芥 过表达CsCAT3基因的拟南芥耐盐性显著增强。 [58]
ScCAT2 甘蔗 大肠杆菌 携带ScCAT2基因的大肠杆菌耐盐性增强。 [59]
APX
APX 拟南芥 烟草 转基因烟草耐盐性增强。 [60]
名称
Name
来源
Source
目标作物
Target crop
转基因作物表现
Transgenic crop performance
参考文献
Reference
OsAPX2
水稻
水稻
敲除OsAPX2基因水稻在盐胁迫下丙二醛、H2O2含量均较高,而转OsAPX2基因系丙二醛、H2O2含量均较低。 [61]
SbpAPX 盐角草 烟草 过表达烟草表现出生长势和生物量的增多,并明显提升了耐盐性。 [62]
cAPX 豌豆 番茄 转基因番茄在盐胁迫下叶片损伤程度明显改善。 [63]
GPX
W69、W106
小麦
拟南芥
过表达拟南芥植株对于H2O2耐性更强,盐胁迫下耐受性更强,与耐盐相关基因也被诱导表达。 [64]
AtGPXL5
拟南芥
拟南芥
过表达转基因拟南芥在盐胁迫下,幼苗的发芽率、幼苗生长和叶绿素含量均保持良好。 [65]
NnGPX6 荷花 水稻 转基因植株对盐胁迫的耐受性明显高于野生型。 [66]
MDHAR
MDAR1
拟南芥
烟草
转基因烟草具有较高的单脱氢抗坏血酸还原酶活性和较低的ASA水平,对臭氧、盐和PEG胁迫有更强耐受性。 [67]
MDHAR
金虎尾
烟草
盐胁迫下,转基因烟草植株的ASA积累量和MDHAR活性均高于对照植株,转基因植株的脂质过氧化和叶绿素降解受到抑制。 [68]
OsMDHAR 水稻 酵母 携带OsMDHAR的酵母在抗逆性方面表现出更好的耐性。 [69]
DHAR
DHAR 拟南芥 水稻 转基因水稻耐盐性增强。 [70]
AtDHAR
拟南芥
马铃薯
转基因马铃薯的DHAR活性是野生型的4.5倍,抗坏血酸还原水平是野生型的2.8倍,在干旱和盐胁迫下表现出较快的生长速度。 [71]
AtDHAR
拟南芥
烟草
转基因植株保持了ASA的氧化还原状态,对臭氧、干旱、盐和PEG胁迫的耐受性增强。 [67]
GR
GR3
水稻
水稻
敲除GR3水稻在盐胁迫下表现出更强的敏感性,补充GR3水稻恢复了盐胁迫下的生长和生理损伤。 [72]

Fig.3

Schematic diagram of ABA pathway"

Fig.4

LRX3/4/5-RALF22/23-FER regulatory pathway"

[1] Ali N M, Altaey D, Altaee N H. The impact of selenium,nano (SiO2) and organic fertilization on growth and yield of potato Solanum tuberosum L. under salt stress conditions. IOP Conference Series: Earth and Environmental Science, 2021, 735(1):12042.
[2] Rinse J, De V, De B, et al. Effect of salt stress on growth,Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS ONE, 2013, 8(3):60183.
[3] Munns R. Genes and salt tolerance:Bringing them together. New Phytologist, 2005, 167(3):645-663.
pmid: 16101905
[4] Li J J, Ma J J, Guo H L, et al. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to salt stress. Plant Physiology and Biochemistry, 2018, 126:1-10.
doi: 10.1016/j.plaphy.2018.02.018
[5] 胡延飞. 番茄microRNA398的表达及在耐盐性中功能的初步分析. 杭州:浙江农林大学.
[6] Yuan F, Yang H, Xue Y, et al.. OSCA 1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514(7522):367-371.
doi: 10.1038/nature13593
[7] Zhang M, Wang D, Kang Y, et al. Structure of the mechanosensitive OSCA channels. Nature Structural and Molecular Biology, 2018, 25(9):850-858.
doi: 10.1038/s41594-018-0117-6 pmid: 30190597
[8] Jiang Z, Zhou X, Tao M, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572(7769):341-346.
doi: 10.1038/s41586-019-1449-z
[9] Martinière A, Lavagi I, Nageswaran G, et al. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31):12805-12810.
[10] Feng W, Kita D, Peaucelle A, et al. The feronia receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Current Biology, 2018, 28(5):666-675.
doi: S0960-9822(18)30025-3 pmid: 29456142
[11] Zelm V A, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 2020, 71:403-433.
doi: 10.1146/annurev-arplant-050718-100005 pmid: 32167791
[12] Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant,Cell and Environment, 2010, 33(4):453-467.
doi: 10.1111/j.1365-3040.2009.02041.x
[13] Zepeda-Jazo I, Velarde-Buendia A M, Enriquez-Figueroa R, et al. Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiology, 2011, 157(4):2167-2180.
doi: 10.1104/pp.111.179671 pmid: 21980172
[14] Li H Y, Tang X Q, Yang X Y, et al. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress. Scientific Reports, 2021, 11(1):12878.
doi: 10.1038/s41598-021-92317-6
[15] Teh C Y, Shaharuddin N A, Ho C L, et al. Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress. Acta Physiologiae Plantarum, 2016, 38(6):151.
doi: 10.1007/s11738-016-2163-1
[16] Butt M, Sattar A, Abbas T, et al. Foliage applied proline induces salt tolerance in chili genotypes by regulating photosynthetic attributes,ionic homeostasis,and antioxidant defense mechanisms. Horticulture,Environment and Biotechnology, 2020, 61(9):693-702.
doi: 10.1007/s13580-020-00236-8
[17] Szabados L, Savouré A. Proline:a multifunctional amino acid. Trends in Plant Science, 2010, 15(2):89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181
[18] Zhang C S, Lu Q, Verma D. Removal of feedback inhibition of δ1-pyrroline-5-carboxylate synthetase,a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. Journal of Biological Chemistry, 1995, 270(35):20491-20496.
doi: 10.1074/jbc.270.35.20491 pmid: 7657626
[19] Blackman S A, Leopold R L O C. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiology, 1992, 100(1):225.
doi: 10.1104/pp.100.1.225 pmid: 16652951
[20] Guo R, Yang Z Z, Li F, et al. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biology, 2015, 15(1):170.
doi: 10.1186/s12870-015-0546-x
[21] Kerepesi I, Galiba G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 2000, 40(2):482-487.
doi: 10.2135/cropsci2000.402482x
[22] Makela P, Krkkinen J, Somersalo S. Effect of glycinebetaine on chloroplast ultrastructure,chlorophyll and protein content,and rubpco activities in tomato grown under drought or salinity. Biologia Plantarum, 2000, 43(3):471-475.
doi: 10.1023/A:1026712426180
[23] De la Torre-Gonzalez A, Montesinos P D, Blasco B, et al. Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato (Solanum lycopersicum L.) commercial genotypes. Journal of Plant Physiology, 2018, 231:329-336.
doi: S0176-1617(18)30374-2 pmid: 30388672
[24] Xu Z J, Sun M L, Jiang X F, et al. Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. Frontiers in Plant Science, 2018, 9:1469.
doi: 10.3389/fpls.2018.01469 pmid: 30369936
[25] Chen T H, Murata N. Glycinebetaine protects plants against abiotic stress:mechanisms and biotechnological applications. Plant,Cell and Environment, 2011, 34(1):1-20.
doi: 10.1111/j.1365-3040.2010.02232.x
[26] Ozturk M, Turkyilmaz Unal B, García-Caparrós P, et al. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 2021, 172(2):1321-1335.
doi: 10.1111/ppl.13297
[27] Jia G X, Zhu Z Q, Chang F Q, et al. Transformation of tomato with the BADH gene from atriplex improves salt tolerance. Plant Cell Reports, 2002, 21(2):141-146.
doi: 10.1007/s00299-002-0489-1
[28] Niazian M, Sadat-Noori S A, Tohidfar M, et al. Agrobacterium- mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague):an important industrial medicinal plant. Industrial Crops and Products, 2019, 132:29-40.
doi: 10.1016/j.indcrop.2019.02.005
[29] Bohnert H J, Nelson D E, Jensen R G. Adaptation to environmental stresses. Plant Cell, 1995, 7(7):1099-1111.
doi: 10.2307/3870060
[30] Gupta B, Huang B. Mechanism of salinity tolerance in plants:physiological,biochemical,and molecular characterization. International Journal of Genomics, 2014, 2014:701596.
[31] Bassil E, Coku A, Blumwald E. Cellular ion homeostasis:emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. Journal of Experimental Botany, 2012, 63(16):5727-5740.
doi: 10.1093/jxb/ers250 pmid: 22991159
[32] Dragwidge J M, Scholl S, Schumacher K, et al. NHX-type Na+ (K+)/H+ antiporters are required for TGN/EE trafficking and endosomal ion homeostasis in Arabidopsis thaliana. Journal of Cell Science, 2019, 132(7):226472.
[33] Kumar S, Kalita A, Srivastava R, et al. Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity,oxidative stress,and herbicide in transgenic mungbean. Frontiers in Plant Science, 2017, 8:1896.
doi: 10.3389/fpls.2017.01896
[34] Yamaguchi T, Aharon G S, Sottosanto J B, et al. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(44):16107-16112.
[35] Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12):6896-6901.
[36] Liu J, Ishitani M, Halfter U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7):3730-3734.
[37] Ishitani M, Liu J, Halfter U, et al. SOS 3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000, 12(9):1667-1678.
doi: 10.1105/tpc.12.9.1667 pmid: 11006339
[38] Quan R, Lin H X, Mendoza I, et al. SCaBP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS 2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19(4):1415-1431.
doi: 10.1105/tpc.106.042291
[39] Quintero F J, Martinez-Atienza J, Villalta I, et al. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6):2611-2616.
[40] Li J, Zhou H, Zhang Y, et al. The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana. Developmental Cell, 2020, 55(3):367-380.
doi: 10.1016/j.devcel.2020.08.005
[41] Yang Z J, Wang C W, Xue Y, et al. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nature Communications, 2019, 10(1):1199.
doi: 10.1038/s41467-019-09181-2 pmid: 30867421
[42] Hamamoto S, Horie T, Hauser F, et al. HKT transporters mediate salt stress resistance in plants:from structure and function to the field. Current Opinion in Biotechnology, 2015, 32:113-120.
doi: S0958-1669(14)00213-4 pmid: 25528276
[43] Pang C H, Wang B S. Oxidative stress and salt tolerance in plants. Progress in Botany, 2008, 69:231-245.
[44] Tewari R K, Kumar P, Sharma P N. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta, 2006, 223(6):1145-1153.
pmid: 16292566
[45] Tjus S E, Scheller H V, Andersson B, et al. Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I,but also to photosystem II. Plant Physiology, 2001, 125(4):2007-2015.
pmid: 11299380
[46] 吴顺, 萧浪涛. 植物体内活性氧代谢及其信号传导. 湖南农业大学学报(自然科学版), 2003, 29(5):450-456.
[47] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12):909-930.
doi: 10.1016/j.plaphy.2010.08.016 pmid: 20870416
[48] Mittler R. Oxidative stress,antioxidants and stress tolerance. Trends in Plant Science, 2002, 7(9):405-410.
doi: 10.1016/s1360-1385(02)02312-9 pmid: 12234732
[49] Arias-Moreno D M, Jiménez-Bremont J, Maruri-López I, et al. Effects of catalase on chloroplast arrangement in opuntia streptacantha chlorenchyma cells under salt stress. Scientific Reports, 2017, 7(1):8656.
doi: 10.1038/s41598-017-08744-x pmid: 28819160
[50] Noctor G, Foyer C H. A re-evaluation of the atp:NADPH budget during cphotosynthesis:a contribution from nitrate assimilation and its associated respiratory activity?. Journal of Experimental Botany, 1998, 49(329):1895-1908.
[51] Lopez F, Felicie P, Vansuyt G, et al. Ascorbate peroxidase activity,not the mRNA level,is enhanced in salt-stressed Raphanus sativus plants. Physiologia Plantarum, 1996, 97(1):13-20.
doi: 10.1111/j.1399-3054.1996.tb00472.x
[52] Edwards E A, Rawsthorne S, Mullineaux P M. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta, 1990, 180(2):278-284.
doi: 10.1007/BF00194008 pmid: 24201957
[53] Creissen G P, Broadbent P, Kular B, et al. Manipulation of glutathione reductase in transgenic plants:implications for plants' responses to environmental stress. Proceedings of the Royal Society of Edinburgh Section B:Biology Sciences, 1994, 102:167-175.
[54] Wang Y, Yin Y, Chen J, et al. Transgenic arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Science, 2004, 167(4):671-677.
doi: 10.1016/j.plantsci.2004.03.032
[55] 张海娜, 李小娟, 李存东, 等. 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响. 作物学报, 2008, 34(8):1403-1408.
[56] Wang M, Zhao X, Xiao Z, et al. A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity. Plant Molecular Biology, 2016, 91(1-2):115-130.
doi: 10.1007/s11103-016-0446-y
[57] Shafi A, Chauhan R, Gill T, et al. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in arabidopsis under salt stress. Plant Molecular Biology, 2015, 87(6):615-631.
doi: 10.1007/s11103-015-0301-6
[58] 杨子建, 周勇, 戈伶俐, 等. 黄瓜CsCAT3基因逆境胁迫表达及转拟南芥耐盐性分析. 分子植物育种, 2018, 16(3):807-812.
[59] Sun T, Feng L, Wang W, et al. The role of sugarcane catalase gene ScCAT2 in the defense response to pathogen challenge and adversity stress. International Journal of Molecular Sciences, 2018, 19(9):2686.
doi: 10.3390/ijms19092686
[60] Badawi G H, Kawano N, Yamauchi Y, et al. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiologia Plantarum, 2004, 121(2):231-238.
doi: 10.1111/j.0031-9317.2004.00308.x
[61] Zhang Z, Zhang Q, Wu J, et al. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought,salt and cold stresses. PLoS ONE, 2013, 8(2):e57472.
doi: 10.1371/journal.pone.0057472
[62] Singh N, Mishra A, Jha B. Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Marine Biotechnology, 2014, 16(3):321-332.
doi: 10.1007/s10126-013-9548-6
[63] Wang Y, Michael W, Richard M et al. Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. American Society for Horticultural Science, 2005, 130(2):167-173.
[64] Zhai C Z, Lei Z, Yin L J, et al. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLoS ONE, 2013, 8(10):e73989.
doi: 10.1371/journal.pone.0073989
[65] Riyazuddin R, Bela K, Horváth E, et al. Overexpression of the Arabidopsis glutathione peroxidase-like 5 gene (AtGPXL5) resulted in altered plant development and redox status. Environmental and Experimental Botany, 2019, 167:103849.
doi: 10.1016/j.envexpbot.2019.103849
[66] Diao Y, Xu H, Li G, et al. Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice. Molecular Biology Reports, 2014, 41(8):4919-4927.
doi: 10.1007/s11033-014-3358-4
[67] Eltayeb A E, Kawano N, Badawi G H, et al. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone,salt and polyethylene glycol stresses. Planta, 2007, 225(5):1255-1264.
doi: 10.1007/s00425-006-0417-7
[68] Eltelib H A, Fujikawa Y, Esaka M. Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. South African Journal of Botany, 2012, 78:295-301.
doi: 10.1016/j.sajb.2011.08.005
[69] Kim I S, Kim Y S, Kim Y H, et al. Potential application of the Oryza sativa monodehydroascorbate reductase gene (OsMDHAR) to improve the stress tolerance and fermentative capacity of saccharomyces cerevisiae. PLoS ONE, 2016, 11(7):e0158841.
doi: 10.1371/journal.pone.0158841
[70] Ushimaru T, Nakagawa T, Fujioka Y, et al. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. Journal of Plant Physiology, 2006, 163 (11):1179-1184.
pmid: 17032619
[71] Eltayeb A E, Yamamoto S, Habora M, et al. Transgenic potato overexpressing arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide,drought and salt stresses. Breeding Science, 2011, 61(1):3-10.
doi: 10.1270/jsbbs.61.3
[72] Wu T M, Lin W R, Kao C H, et al. Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. Plant Molecular Biology, 2015, 87(6):555-564.
doi: 10.1007/s11103-015-0290-5
[73] Athar H, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany, 2008, 63(1-3):224-231.
doi: 10.1016/j.envexpbot.2007.10.018
[74] Behairy R T, Eldanasoury M, Craker L. Impact of ascorbic acid on seed germination,seedling growth,and enzyme activity of salt-stressed fenugreek. Journal of Medicinally Active Plants 1, 2012, 1(3):106-113.
[75] Makavitskaya M, Svistunenko D, Navaselsky I, et al. Novel roles of ascorbate in plants:Induction of cytosolic Ca2+ signals and efflux from cells via anion channels. Journal of Experimental Botany, 2018, 69(14):3477-3489.
doi: 10.1093/jxb/ery056 pmid: 29471538
[76] Saradhi A, Saradhi P P. Proline accumulation under heavy metal stress. Journal of Plant Physiology, 1991, 138(5):554-558.
doi: 10.1016/S0176-1617(11)80240-3
[77] Rajendrakumar C, Reddy B, Reddy A R. Proline-protein interactions:protection of structural and functional integrity of M4 lactate dehydrogenase. Biochemical and Biophysical Research Communications, 1994, 201(2):957-963.
pmid: 8003037
[78] 陈沁, 刘友良. 谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用. 作物学报, 2000, 26(3):365-371.
[79] Surówka E, Latowski D, Dziurka M, et al. Ros-scavengers,osmoprotectants and violaxanthin de-epoxidation in salt-stressed Arabidopsis thaliana with different tocopherol composition. International Journal of Molecular Sciences, 2021, 22(21):11370.
doi: 10.3390/ijms222111370
[80] Semida W M, Taha R S, Abdelhamid M T, et al. Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. South African Journal of Botany, 2014, 95:24-31.
doi: 10.1016/j.sajb.2014.08.005
[81] Zeng X Q, Chow W S, Su L J, et al. Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light. Physiologia Plantarum, 2010, 138(2):215-225.
doi: 10.1111/j.1399-3054.2009.01316.x
[82] Hatier J, Gould K S. Foliar anthocyanins as modulators of stress signals. Journal of Theoretical Biology, 2008, 253(3):625-627.
doi: 10.1016/j.jtbi.2008.04.018
[83] Oosten M V, Sharkhuu A, Batelli G, et al. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Molecular Biology, 2013, 83(4-5):405-415.
doi: 10.1007/s11103-013-0099-z
[84] Irving H R, Gehring C A, Parish R W. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(5):1790-1794.
[85] Brandt B, Munemasa S, Wang C, et al. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. Elife, 2015, 4:e03599.
doi: 10.7554/eLife.03599
[86] Zhu Y, Huang P, Guo P, et al. CDK 8 is associated with rap2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in Arabidopsis. New Phytologist, 2020, 228(5):1573-1590.
doi: 10.1111/nph.16787
[87] Hoang X L T, Nhi D N H, Thu N B A, et al. Transcription factors and their roles in signal transduction in plants under abiotic stresses. Current Genomics, 2017, 18(6):483-497.
doi: 10.2174/1389202918666170227150057 pmid: 29204078
[88] Hashimoto K, Kudla J. Calcium decoding mechanisms in plants. Biochimie, 2011, 93(12):2054-2059.
doi: 10.1016/j.biochi.2011.05.019 pmid: 21658427
[89] Batistič O, Kudla J. Analysis of calcium signaling pathways in plants. Biochimica et Biophysica Acta, 2012, 1820(8):1283-1293.
doi: 10.1016/j.bbagen.2011.10.012 pmid: 22061997
[90] Ashraf M, Akram N A, Arteca R N, et al. The physiological,biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 2010, 29(3):162-190.
doi: 10.1080/07352689.2010.483580
[91] Shu H M, Guo S Q, Gong Y Y, et al. Effects of brassinosteroid on salinity tolerance of cotton. Agricultural Science and Technology, 2014, 15(9):1433-1437,1470.
[92] El-Mashad A, Mohamed H I. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 2012, 249(3):625-635.
doi: 10.1007/s00709-011-0300-7 pmid: 21732069
[93] Li Q, Xu F, Chen Z, et al. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nature Plants, 2021, 7(8):1108-1118.
doi: 10.1038/s41477-021-00959-1 pmid: 34226689
[94] Yang L, Zu Y G, Tang Z H et al. Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006, 311(5757):91-94.
doi: 10.1126/science.1118642 pmid: 16400150
[95] Peng J Y, Li Z H, Wen X, et al. Salt-induced stabilization of EIN3/EIL 1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genetics, 2014, 10(10):e1004664.
doi: 10.1371/journal.pgen.1004664
[96] Lei Y, Zu Y G, Tang ZH. Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environmental and Experimental Botany, 2013, 86:60-69.
doi: 10.1016/j.envexpbot.2010.08.006
[97] 王娟, 黄荣峰. 乙烯调控植物耐盐性的研究进展. 植物生理学报, 2015, 51(10):1567-1572.
[98] Farhangi-Abriz S, Ghassemi-Golezani K. How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants?. Ecotoxicology and Environmental Safety, 2018, 147:1010-1016.
doi: S0147-6513(17)30668-1 pmid: 29976003
[99] Zhao C, Zayed O, Yu Z, et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(51):13123-13128.
[100] Zhao C, Jiang W, Omar Z, et al. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. National Science Review, 2020, 8(1):149.
[101] Zhu Z, Wei G, Li J, et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 2004, 167(3):527-533.
doi: 10.1016/j.plantsci.2004.04.020
[102] Zhang X, Zhang W, Lang D et al. Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch. by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Environmental Science and Pollution Research, 2018, 25(26):25916-25932.
doi: 10.1007/s11356-018-2595-9
[103] 位晶. 外源硒对玉米根系形态和养分吸收的影响及在盐胁迫中作用. 保定:河北大学.
[104] Napieraj N, Reda M G, Janicka M G. The role of NO in plant response to salt stress:interactions with polyamines. Functional Plant Biology, 2020, 47(10):865-879.
doi: 10.1071/FP19047 pmid: 32522331
[105] Ahmad P, Wani M. Physiological mechanisms and adaptation strategies in plants under changing environment. Springer,New York: 2014:137-159.
[106] Zhang Y, Wang L, Liu Y, et al. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 2006, 224(3):545-555.
doi: 10.1007/s00425-006-0242-z
[107] Kopyra M, Gwód E W A. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of lupinus luteus. Plant Physiology and Biochemistry, 2003, 41(11/12):1011-1017.
doi: 10.1016/j.plaphy.2003.09.003
[108] Dong R, Jie Z, Huan H, et al. High salt tolerance of a bradyrhizobium strain and its promotion of the growth of stylosanthes guianensis. International Journal of Molecular Sciences, 2017, 18(8):1625.
doi: 10.3390/ijms18081625
[109] Numan M, Bashir S, Khan Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants:a review. Microbiological Research, 2018, 209:21-32.
doi: 10.1016/j.micres.2018.02.003
[110] Wani S H, Kumar V, Khare T, et al. Engineering salinity tolerance in plants:progress and prospects. Planta, 2020, 251(4):76.
doi: 10.1007/s00425-020-03366-6
[111] Li W F, Wang D L, Jin T C, et al. The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Molecular Biology Reporter, 2011, 29(2):278-290.
doi: 10.1007/s11105-010-0224-y
[112] Fita A, Rodríguez-Burruezo A, Boscaiu M, et al. Breeding and domesticating crops adapted to drought and salinity:a new paradigm for increasing food production. Frontiers in Plant Science, 2015, 6:978.
doi: 10.3389/fpls.2015.00978 pmid: 26617620
[113] Rus A M, Estañ M T, Gisbert C, et al. Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant,Cell and Environment, 2001, 24(8):875-880.
doi: 10.1046/j.1365-3040.2001.00719.x
[114] Ghanti S, Sujata K G, Kumar B, et al. Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biologia Plantarum, 2011, 55(4):634.
[115] Pandolfi C, Azzarello E, Mancuso S, et al. Acclimation improves salt stress tolerance in Zea mays plants. Journal of Plant Physiology, 2016, 201:1-8.
doi: S0176-1617(16)30108-0 pmid: 27372277
[116] Farhangi-Abriz S, Torabian S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety, 2017, 137:64-70.
doi: S0147-6513(16)30503-6 pmid: 27915144
[1] Wen Danni, Bao Lingran, Liu Mengmeng, Shen Bo. Transcriptome Analysis of OsWD40 Overexpression Rice Roots in Response to Salt Stress [J]. Crops, 2022, 38(6): 42-53.
[2] Wang Jinxiang, Wang Yanzhi, Xing Lixuan, Liu Jianxia, Wang Runmei. Effects of GA3 on Root Growth and Osmotic Regulation of Lübaonuo Broomcorn Millet Seedlings under Salt Stress [J]. Crops, 2022, 38(6): 98-104.
[3] Wang Yan, Li Tingyou, Wang Dou, Li Jiawei, Peng Wenlu, Rui Haiyun. Effects of Isosteviol on Growth of Wheat Seedlings under Salt Stress [J]. Crops, 2022, 38(5): 141-145.
[4] Shi Xian, Li Hongyou, Lu Bingyue, Zhou Yun, Zhao Jiju, Zhao Mengli, Liang Jing, Meng Hengling. Physiological Responses of Three Tartary Buckwheat Varieties to Salt Stress and Evaluation of Salt Tolerance [J]. Crops, 2022, 38(3): 149-154.
[5] Wu Pengbo, Li Lijun, Zhang Yanli. Comprehensive Evaluation of Saline-Alkali Tolerance and Comparison of Rhizosphere Soil Organic Acid Content at Rapeseed Seedling Stage [J]. Crops, 2022, 38(1): 110-115.
[6] Cai Qiqi, Wang Gang, Dong Yinzhuang, Yu Lihua, Wang Yuguang, Geng Gui. Effects of Different Neutral Salt Stress on Photosynthesis and Antioxidant Enzyme System of Sugar Beet Seedlings [J]. Crops, 2022, 38(1): 130-136.
[7] Weng Wenfeng, Wu Xiaofang, Zhang Kaixuan, Tang Yu, Jiang Yan, Ruan Jingjun, Zhou Meiliang. The Overexpression of FtbZIP5 Improves Accumulation of Flavonoid in the Hairy Roots of Tartary Buckwheat and Its Salt Tolerance [J]. Crops, 2021, 37(4): 1-9.
[8] Wei Yanqiu, Jing Yizhuo, Guo Xiaoheng, Zhang Li, Han Dan, Shao Huifang. Research Progress on the Effect of Exogenous Selenium on Salt Resistance of Plants [J]. Crops, 2021, 37(2): 15-21.
[9] Zhang Ziqiang, Bai Chen, Zhang Huizhong, Li Xiaodong, Wang Liang, Fu Zengjuan, Zhao Shangmin, E Yuanyuan, Zhang Hui, Zhang Bizhou. Research Progress on Morphology, Physiological and Biochemical Characteristics, and Molecular Level of Salt Stress in Sugar Beet [J]. Crops, 2020, 36(3): 27-33.
[10] Zhang Di,Miao Xingfen,Wang Yuting. Evaluation and Screening of Salt Tolerance in 100 Foxtail Millet at Germination Stage [J]. Crops, 2019, 35(6): 43-49.
[11] Ge Zhenmei,Liu Zhiguo,Zhao Lu,Zhang Xiaoyu,Liu Guixia. Effects of Salt Stress on Seeds Germination of Astragalus membranaceus [J]. Crops, 2019, 35(6): 187-194.
[12] Gu Jiaojiao,Hu Bowen,Jia Yan,Sha Hanjing,Li Jingwei,Ma Chao,Zhao Hongwei. Effects of Salt Stress on Root Related Traits and Yield of Rice [J]. Crops, 2019, 35(4): 176-182.
[13] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum [J]. Crops, 2018, 34(4): 167-174.
[14] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[15] Kailun Zhang,Shouming Chen,Hong Yin,Bin Li,Liangwen Xie,Fan He. and Antioxidant Activity of Tobacco Seedlings under Salt Stress [J]. Crops, 2018, 34(3): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[2] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years[J]. Crops, 2018, 34(4): 32 -36 .
[3] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[4] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin[J]. Crops, 2018, 34(4): 8 -12 .
[5] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties[J]. Crops, 2018, 34(4): 79 -83 .
[6] Yan Zhang,Cui Yin,Yun’e Cao. Effects of Earthworm Fermentation Broth on Fruit and Vegetables Quality[J]. Crops, 2018, 34(1): 102 -106 .
[7] Shaohui Huang,Yunma Yang,Ketong Liu,Junfang Yang,Suli Xing,Yanming Sun,Liangliang Jia. Effects of Different Fertilization Method on Wheat Yield and Fertilizer Contribution Rate in Hebei Province[J]. Crops, 2018, 34(1): 113 -117 .
[8] Zhimin Du,Yuchen Yang,Yuanye Xia,Yanlong Gong,Zhiqiang Yan,Hai Xu. Effects of Harvest Time on Quality Traits of Hybrid Japonica Rice and Inbred Japonica Rice in Northern China[J]. Crops, 2018, 34(1): 147 -151 .
[9] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[10] Kai Zhu,Fei Zhang,Fulai Ke,Yanqiu Wang,Jianqiu Zou. Effects of Planting Density on Yield and Physiological Characteristics of Sorghum Hybrids Suitable for Mechenization[J]. Crops, 2018, 34(1): 83 -87 .