Crops ›› 2022, Vol. 38 ›› Issue (5): 141-145.doi: 10.16035/j.issn.1001-7283.2022.05.020

Previous Articles     Next Articles

Effects of Isosteviol on Growth of Wheat Seedlings under Salt Stress

Wang Yan(), Li Tingyou, Wang Dou, Li Jiawei, Peng Wenlu, Rui Haiyun()   

  1. Taizhou University, Taizhou 225300, Jiangsu, China
  • Received:2021-05-13 Revised:2021-09-13 Online:2022-10-15 Published:2022-10-19

Abstract:

To study the influence of early seedling growth of wheat under salt stress by gibberellin structure analogues isosteviol, it is proposed to develop a new plant growth hormone which can improve the salt resistance of wheat. Using filter paper culture method, NaCl solution were simulated as the salt stress condition separately, 10-10~10-7mol/L isosteviol water solution were used to soak seeds of wheat, the control group CK (no salt stress) and model group (isosteviol soaking) were established. After seven days of growth, seedling length, root length, seedling fresh weight, root fresh weight, antioxidant enzymes (activities of SOD, CAT, POD) and content of MDA were measured. The results showed that the different contents of isosteviol played a certain role to improve the growth indicators and antioxidant enzyme activity of early wheat seedlings under salt stress, the most obvious role in promoting root growth and SOD activity. Under 100mmol/L NaCl salt stress condition, the best concentration of isosteviol for improving the salt resistance of wheat was 10-8mol/L. Compared with the model group, the root fresh weight of wheat seedlings increased by 89.7%, and SOD activity increased by 53.3%. Under 150mmol/L NaCl salt stress condition, the best concentration of isosteviol for improving the salt resistance of wheat was 10-9mol/L, compared with the model group, the root fresh weight of wheat seedlings increased by 80.8%, and SOD activity increased by 203.9%. In conclusion, isosteviol could relieve the stress of salt stress on early growth of wheat seedlings through improving the antioxidant enzyme activity, and the optimum concentration of isosteviol was different with the concentration of salt stress.

Key words: Isosteviol, Wheat, Salt stress, Antioxidant enzyme

Table 1

Factor levels"

处理Treatment NaCl (mmol/L) 异甜菊醇Isosteviol (mol/L)
A1 100 10-7
A2 100 10-8
A3 100 10-9
A4 100 10-10
模型组(A)
Model group (A)
100 0
B1 150 10-7
B2 150 10-8
B3 150 10-9
B4 150 10-10
模型组(B)
Model group (B)
150 0
CK 0 0

Table 2

Effects of isosteviol on growth of wheat seedlings under 100mmol/L NaCl salt stress"

处理
Treatment
苗长
Seedling length (cm)
根长
Root length (cm)
苗鲜重
Seedling fresh weight (g)
根鲜重
Root fresh weight (g)
CK 9.84±1.49 7.92±2.86 0.063±0.018 0.030±0.013
模型组(A) Model group (A) 7.80±1.226# 3.18±1.16## 0.061±0.013 0.029±0.006
A1 8.84±1.08* 7.12±1.14** 0.072±0.013 0.041±0.012*
A2 9.05±1.21* 6.56±1.58** 0.075±0.013 0.055±0.013**
A3 8.74±1.65* 7.76±1.06** 0.071±0.016 0.035±0.008*
A4 8.51±1.48* 5.85±1.22** 0.098±0.147 0.050±0.014**

Table 3

Effects of isosteviol on growth of wheat seedlings under 150mmol/L NaCl salt stress"

处理
Treatment
苗长
Seedling length (cm)
根长
Root length (cm)
苗鲜重
Seedling fresh weight (g)
根鲜重
Root fresh weight (g)
CK 9.84±1.49 7.92±2.86 0.063±0.018 0.030±0.013
模型组(B) Model group (B) 7.09±1.31# 2.93±0.70## 0.049±0.009# 0.026±0.007#
B1 7.06±0.92 3.94±0.70* 0.054±0.013 0.031±0.007*
B2 5.45±1.81 3.86±0.53* 0.045±0.012 0.031±0.011*
B3 7.37±1.33 4.29±0.52** 0.059±0.005* 0.047±0.012**
B4 5.54±1.17 2.95±0.35 0.038±0.013 0.030±0.007*

Fig.1

Effects of isosteviol on MDA content and SOD, POD, CAT activities of wheat leaves under 100mmol/L NaCl salt stress n=10, model group compared to CK group:“#”and“##”represent P < 0.05 and P < 0.01, respectively; experimental group compared to model group: “*”and“**”represent P < 0.05 and P < 0.01, respectively, the same below"

Fig.2

Effects of isosteviol on MDA content and SOD, POD, CAT activities of wheat leaves under 150mmol/L NaCl salt stress"

[1] 孙健, 赵宏伟, 王敬国, 等. 水稻孕穗期剑叶形态和蒸腾特性与耐盐碱性的关系. 华北农学报, 2012, 27(6):84-91.
doi: 10.3969/j.issn.1000-7091.2012.06.018
[2] Berenice K A, Machemer-Nooman K, Francides G S J, et al. Dry priming of maize seeds reduces aluminum stress. PLoS ONE, 2015, 10(12):e0145742.
doi: 10.1371/journal.pone.0145742
[3] Abdel A A, Tran L P. Impacts of priming with Silicon on the growth and tolerance of maize plants to alkaline stress. Frontiers in Plant Science, 2016, 10(7):243-248.
doi: 10.3389/fpls.2019.00243
[4] 苏兰茜, 白婷玉, 鱼欢, 等. 盐胁迫对两种菠萝蜜属植物幼苗生长及光合荧光特性的影响. 中国农业科学, 2019, 52(12):2140-2150.
[5] 马原松, 辛倩, 朱晓琴, 等. 精胺对盐胁迫下小麦幼苗生理生化指标的影响. 江苏农业科学, 2018, 46(3):53-56.
[6] 高添乐, 陈丹仪, 李云峰, 等. 外源赤霉素对盐胁迫下甜玉米幼苗生理性状的影响. 种子, 2019, 38(6):48-50.
[7] 王弯弯, 诸葛玉平, 王慧桥, 等. 外源NO对盐胁迫下小麦幼苗生长及生理特性的影响. 土壤学报, 2017, 54(2):516-523.
[8] Monika S, Deepa P, Payal S, et al. Loop-mediated isothermal amplification assays:rapid and efficient diagnostics for genetically modified crops. Food Control, 2019, 106(4):203-210.
[9] 殷奎德, 马连菊, 刘世强. 逆境条件下植物活性氮(ROS)的研究进展. 沈阳农业大学学报, 2003, 34(2):147-149.
[10] 郭永泰, 侯熙彦, 郑昌吉, 等. 新型异甜菊醇衍生物的合成、表征及生物活性研究. 有机化学, 2019, 39(12):3532-3541.
doi: 10.6023/cjoc201905029
[11] 高添乐, 陈丹仪, 李云峰, 等. 外源赤霉素对盐胁迫下甜玉米幼苗生理性状的影响. 种子, 2019, 38(6):48-50.
[12] 王楠, 高静, 黄文静, 等. 赤霉素浸种时长和施用浓度对重度干旱和盐胁迫下黄芪幼苗发育的影响. 生态学杂志, 2019, 38(9):2693-2701.
[13] 朱秀红, 任方方, 茹广欣, 等. 赤霉素对盐胁迫下泡桐种子萌发及幼苗生理特性的影响. 种子, 2021, 40(6):31-37.
[14] 刘秀芳, 黄曦, 徐汉生. 甜叶醇的结构改造及生物活性试验. 武汉大学学报(自然科学版), 1994(2):74-78,94.
[15] 郝再彬, 苍晶, 徐仲. 植物生理学实验. 哈尔滨: 哈尔滨工业大学出版社, 2004.
[16] 魏博娴. 中国盐碱土的分析与成因分析. 水土保持应用技术, 2012(6):27-28.
[17] Shayegan D, Sendi J J, Sahragard A, et al. Influence of gibberellic acid on life table parameters of Helicoverpa armigera Hübner (Lepidoptera:Noctuidae) in laboratory conditions. International Journal of Tropical Insect Science, 2019, 39(3):195-202.
doi: 10.1007/s42690-019-00004-x
[18] 李西, 吴亚娇, 孙凌霞. 铅胁迫对三种暖季型草坪草生长和生理特性的影响. 草业学报, 2014, 23(4):171-180.
[19] 列淦文, 叶龙华, 薛立. 臭氧胁迫对植物主要生理功能的影响. 生态学报, 2014, 34(2):294-306.
[20] 朱金芳, 刘京涛, 陆兆华, 等. 盐胁迫对中国柽柳幼苗生理特性的影响. 生态学报, 2015, 35(15):5140-5146.
[1] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[2] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[3] Hui Chao, Yang Weijun, Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing. Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area [J]. Crops, 2022, 38(6): 201-207.
[4] Shen Wenyuan, Chen Xinyu, Yu Xurun, Wu Yunfei, Chen Gang, Xiong Fei. Advance of Effects of Rhizosphere Temperature Stress on Morphology and Physiology of Wheat Root [J]. Crops, 2022, 38(6): 23-32.
[5] Wang Junzhen, Zhou Meiliang, Li Faliang, Zhang Kaixuan, Zhu Jianfeng, Shen A’yi, Luogu Youfu, Yao Juhong, Yin Yuanjie, Wu Dongming, Zhang Jie. Breeding and Cultivation Technology of New Tartary Buckwheat Variety “Chuanqiao 6” [J]. Crops, 2022, 38(6): 241-244.
[6] Wen Danni, Bao Lingran, Liu Mengmeng, Shen Bo. Transcriptome Analysis of OsWD40 Overexpression Rice Roots in Response to Salt Stress [J]. Crops, 2022, 38(6): 42-53.
[7] Zhu Qidi, Li Yanyan, Lu Meng, Lin Shengzhe, Yu Chengqiang, Liu Ke. Analysis of Wheat Kernel Quality and Morphological Characteristics at Different Spikelet Positions [J]. Crops, 2022, 38(6): 88-92.
[8] Wang Jinxiang, Wang Yanzhi, Xing Lixuan, Liu Jianxia, Wang Runmei. Effects of GA3 on Root Growth and Osmotic Regulation of Lübaonuo Broomcorn Millet Seedlings under Salt Stress [J]. Crops, 2022, 38(6): 98-104.
[9] Wang Hanxiang, Li Guangcun, Xu Jianfei, Wang Wanxing, Jin Liping. Advances in Research on Salt Tolerance Mechanism of Plants [J]. Crops, 2022, 38(5): 1-12.
[10] Sun Yunchao, Peng Keyan, Feng Shengye, Ji Chuanyun, Lü peng, Ju Zhengchun. Effects of Row Spacing and Seedling Belt Width on Dry Matter Accumulation and Distribution of Wheat in Wide Refined Sowing [J]. Crops, 2022, 38(5): 130-134.
[11] Chang Haigang, Li Guang, Yuan Jianyu, Xie Mingjun, Qi Xiaoping. Effects of Different Fertilization Methods on Soil Nutrients and Yield of Spring Wheat in the Loess Hilly Region of Central Gansu Province [J]. Crops, 2022, 38(5): 160-166.
[12] Ge Changbin, Qin Suyan, Huang Jie, Cao Yanyan, Liao Pingʼan. Effects of Tillage Methods on Fusarium Head Blight and Yield of Wheat [J]. Crops, 2022, 38(5): 235-240.
[13] Li Ning, Liu Tongtong, Yang Jinwen, Shi Yugang, Wang Shuguang, Sun Daizhen. Analysis of Physiological Differences of Wheat Varieties with Different Nitrogen Use Efficiency [J]. Crops, 2022, 38(5): 87-96.
[14] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[15] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[4] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[5] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .
[6] Wenlian Bai,Yi Zheng,Jingxiu Xiao. Below-Ground Biotic Mechanisms of Phosphorus Uptake and Utilization Improved by Cereal and Legume Intercropping-A Review[J]. Crops, 2018, 34(4): 20 -27 .
[7] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China[J]. Crops, 2018, 34(4): 42 -47 .
[8] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress[J]. Crops, 2018, 34(4): 48 -52 .
[9] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane[J]. Crops, 2018, 34(4): 53 -61 .
[10] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang[J]. Crops, 2018, 34(4): 62 -68 .