Crops ›› 2022, Vol. 38 ›› Issue (5): 153-159.doi: 10.16035/j.issn.1001-7283.2022.05.022

Previous Articles     Next Articles

The Influences of Different Altitudes Gradients on Growth and Rhizome Quality of Cassava in Yunnan Province

Li Yuexian1(), Duan Chunfang1,2, Jiang Tailing1, Liu Qian1, Yan Wei1, Xiong Xiankun1, Zhang Linhui1, Song Jiming1, Shen Shaobin1, Zhou Yingchun1, Liu Guanghua3()   

  1. 1Tropical and Subtropical Economic Crops Institute, Yunnan Academy of Agricultural Sciences, Baoshan 678000, Yunnan, China
    2Baoshan Quanxin Agricultural Science and Technology Co. Ltd., Baoshan 678000, Yunnan, China
    3Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
  • Received:2021-06-01 Revised:2021-07-07 Online:2022-10-15 Published:2022-10-19

Abstract:

To study the effects of altitude gradients on growth and rhizome quality of cassava in Yunnan province, the growth and rhizome quality of cassava at 800, 1000, 1200, 1400 and 1600m were studied by using correlation analysis, stepwise regression, path analysis and degree of determination analysis methods. The maximum variation coefficients were bearing flower and fruit or not and hydrocyanic acid content with the change of altitude gradient. There were notable differences of plant height, main stem height, branch number, and deciduous height between high altitude and low altitude. These differences almost showed a downward trend with the rise in altitude, and they were significantly negatively correlated with changes in the altitude gradients. The changes of different altitude gradients mainly affected the deciduous height, branch number and plant height of cassava, with an impact value of 71.1%, and also had impact on the L(+)-ascorbic acid and hydrocyanic acid content of roots, with an impact value of 95.6%. With the increasing of altitude, the content of starch, protein, L(+)-ascorbic acid and hydrocyanic acid of rhizome also increased, and there was a significant positive correlation with the changes of altitude gradients, while the crude fiber content remained basically unchanged. The growth and rhizome quality of cassava in Yunnan were influenced by different altitude gradients, among which the altitude gradient had the maximum direct influences on the variation of hydrocyanic acid content. The quality of cassava rhizome of 1400m can basically meet the production demand, and cassava cultivation could be expanded to high-altitude areas.

Key words: Cassava, Altitude gradient, Growth, Rhizome quality

Table 1

Experimental field overview"

海拔
Altitude
(m)
经度
Longitude
纬度
Attitude
年均气温
The annual average
temperature (℃)
年相对湿度
Annual relative
humidity (%)
年降雨量
Annual rainfall
(mm)
光合有效曝辐量
Photosynthetic
effective exposure
(mol/m2)
光合有效辐照度
Photosynthetically
effective irradiance
[μmol/(m2·s)]
日照时数
Sunshine
hour
(h)
800 98°50′45″ 25°1′39″ 23.01 55.93 361.9 1.96 542.19 4.99
1000 98°49′25″ 25°1′23″ 20.04 58.32 377.5 1.87 531.38 4.86
1200 98°49′11″ 25°1′25″ 18.89 60.13 467.8 1.76 501.24 4.79
1400 98°48′58″ 25°1′36″ 17.46 60.96 589.3 1.69 483.98 4.66
1600 98°48′45″ 25°2′33″ 17.81 64.10 612.1 1.65 457.76 4.58

Table 2

Variance analysis of agronomic traits of cassava under different altitude gradients"

海拔
Altitude (m)
株高
Plant height
(cm)
茎粗
Stem diameter
(cm)
主茎高
Height of main
stem (cm)
分枝数
Number of
branches
落叶高度
Deciduous
height (cm)
寒害级数
Class of cold
damage
800 292.40±44.94a 24.90±3.05ab 283.90±53.86a 1.20±0.63b 283.90±45.04a 4.00±0.00a
1000 284.10±17.34a 28.10±2.05a 186.30±30.42b 2.50±0.53a 172.40±49.82b 3.10±0.99b
1200 210.10±32.37b 24.12±6.29b 92.50±38.09c 2.10±0.57a 99.40±45.58c 3.10±0.99b
1400 148.20±25.95c 19.63±1.78c 64.80±21.60cd 2.10±0.32a 120.10±57.29c 1.00±0.00c
1600 205.60±24.86b 25.04±5.03ab 48.40±19.80d 2.40±0.52a 120.10±48.78c 3.80±0.42a
平均值Average value 228.08 24.36 135.18 2.06 159.18 3.00
标准差Standard deviation 61.74 4.75 95.36 0.68 82.54 1.25
变异系数Coefficient of variation (%) 27.07 19.51 70.54 33.13 51.85 41.51

Table 3

The correlation analysis on cassava growth traits and different altitude gradients"

性状
Trait
株高
Plant
height
茎粗
Stem
diameter
主茎高
Height of
main stem
分枝数
Number of
branches
落叶高度
Deciduous
height
寒害级数
Class of
cold
damage
是否有花果
Bearing
flower and
fruit or not
单株茎叶鲜重
Fresh weight
of stems and
leaves per plant
单株鲜薯个数
Fresh root
number
per plant
单株鲜薯重
Fresh root
weight
per plant
海拔Altitude -0.750** -0.272 -0.667** 0.618** -0.786** -0.287* 0.187 -0.290* -0.083 -0.157
株高Plant height 1.000 0.438** 0.779** -0.446** 0.812** 0.533** -0.004 0.366** 0.233 0.316*
茎粗Stem diameter 1.000 0.353* 0.037 0.335* 0.424** 0.043 0.343* 0.219 0.337*
主茎高Height of main stem 1.000 -0.648** 0.818** 0.449** -0.039 0.318* 0.168 0.270
分枝数Number of branches 1.000 -0.521** -0.274 0.250 -0.122 0.072 -0.036
落叶高度Deciduous height 1.000 0.366** -0.068 0.352* 0.295* 0.242
寒害级数
Class of cold damage
1.000 0.171 0.131 -0.123 0.176
是否有花果
Bearing flower and fruit or not
1.000 -0.259 -0.280* -0.174
单株茎叶鲜重
Fresh weight of stems and
leaves per plant
1.000 0.332* 0.825**
单株鲜薯个数
Fresh root number per plant
1.000 0.200
单株鲜薯重
Fresh root weight per plant
1.000

Table 4

Path analysis on cassava growth traits and different altitude gradients"

因子
Factor
简单相关系数
Simple correlation coefficient
通径系数(直接作用)
Path coefficient (direct effect)
间接通径系数(间接作用)Indirect path coefficient (indirect effect)
X5 X4 X1 合计Total
X5 -0.786 -0.389 -0.144 -0.253 -0.397
X4 0.618 0.276 0.203 0.139 0.342
X1 -0.750 -0.312 -0.316 -0.123 -0.439

Table 5

Cassava rhizome quality comparison at different gradients"

海拔
Altitude (m)
淀粉
Starch (g/100g)
蛋白质
Protein (%)
粗纤维
Crude fiber (%)
L(+)-抗坏血酸
L(+)-ascorbic acid (mg/100g)
氢氰酸
Hydrocyanic acid (mg/100kg)
800 28.70±1.00a 0.50±0.10a 0.80±0.10a 35.10±0.30a 5.33±0.35a
1000 27.67±2.12a 0.67±0.12a 0.87±0.06a 34.33±1.15a 8.30±0.66b
1200 34.20±0.20a 0.60±0.10a 0.90±0.10a 32.87±0.71b 9.00±1.00b
1400 41.17±0.55c 1.33±0.15b 0.93±0.06a 44.60±0.20c 48.70±0.20c
1600 32.30±0.50b 0.70±0.10a 0.87±0.06a 28.30±0.60d 11.30±0.10d
标准偏差Standard deviation 5.059 0.320 0.080 5.547 16.775
变异系数Coefficient of variation (%) 15.42 42.14 9.15 15.83 101.50

Table 6

The correlation analysis of cassava rhizome quality at different altitude gradients"

指标Index 淀粉Starch 蛋白质Protein 粗纤维Crude fiber L(+)-抗坏血酸L(+)-ascorbic acid 氢氰酸Hydrocyanic acid
海拔Altitude 0.622* 0.596* 0.335 -0.349 0.862**
淀粉Starch 1.000 0.522* 0.462 0.182 0.793**
蛋白质Protein 1.000 0.398 0.367 0.711**
粗纤维Crude fiber 1.000 0.249 0.535*
L(+)-抗坏血酸L(+)-ascorbic acid 1.000 0.068
氢氰酸Hydrocyanic acid 1.000

Table 7

The path analysis of cassava rhizome quality at different altitude gradients"

因子
Factor
简单相关系数
Simple correlation
coefficient
通径系数(直接作用)
Path coefficient
(direct effect)
间接通径系数(间接作用)
Indirect path coefficient (indirect effect)
L(+)-抗坏血酸L(+)-ascorbic acid 氢氰酸Hydrocyanic acid 合计Total
L(+)-抗坏血酸
L(+)-ascorbic acid
-0.088 -1.587 1.500 1.500
氢氰酸Hydrocyanic acid 0.457 1.788 -1.331 -1.331
[1] 李开棉, 林雄, 黄洁. 国内外木薯科研发展概况. 热带农业科学, 2001(2):56-60.
[2] 濮文辉. 世界木薯业发展与研究. 世界热带农业信息, 2007(10):1-5.
[3] 方佳, 濮文辉, 张慧坚. 国内外木薯产业发展近况. 中国农学通报, 2010, 26(16):353-361.
[4] 罗兴录, 潘晓璐, 朱艳梅. 木薯内源ABA含量与块根淀粉积累关系研究. 热带作物学报, 2018, 39(3):472-479.
[5] 刘光华, 杨秀峰. 云南木薯. 北京: 中国农业出版社, 2017.
[6] 李月仙, 刘倩, 严炜, 等. 14个木薯新品种(系)在云南不同生态区域的适应性研究. 西南农业学报, 2016, 29(增刊):281-287.
[7] 宋记明, 张林辉, 段春芳, 等. 10个木薯新品系主要农艺性状分析与综合评价. 广东农业科学, 2020, 47(4):8-15.
[8] Silvanini A, Asta C D, Morrone L, et al. Altitude effects on fruit morphology and flour composition of two chestnut cultivars. Scientia Horticulturae, 2014, 176(1):311-318.
doi: 10.1016/j.scienta.2014.07.008
[9] Koyuncu M A, Ekinci K, Gun A. The effects of altitude on fruit quality and compression load for cracking of walnuts (Juglans regia L.). Journal of Food Quality, 2004, 27(6):407-417.
doi: 10.1111/j.1745-4557.2004.00689.x
[10] 孙小红, 周瑾, 胡春霞, 等. 不同海拔对香榧种子外观性状及营养品质的影响. 果树学报, 2019, 36(4):476-485.
[11] 邓小红, 姬拉拉, 熊露露, 等. 不同海拔对钩藤生长及生物碱含量的影响. 植物生理学报, 2020, 56(10):2095-2102.
[12] 李月仙, 刘倩, 严炜, 等. 木薯新品种(系)在云南的适应性比较研究. 热带作物学报, 2012, 33(7):1153-1159.
[13] 马崇熙, 俞奔驰, 卢赛清, 等. 10个木薯品种(系)在广西兴业县的适应性比较研究. 南方农业, 2019, 13(27):183-186.
[14] 刘倩, 刘光华, 宋记明, 等. 6个木薯品种在云南不同地区的适应性研究初报. 西部林业科学, 2018, 47(1):39-46.
[15] 中华人民共和国农业部热带作物及制品标准化技术委员会. 木薯种质资源描述规范:NY/T 1943―2010. 北京: 中华人民共和国农业部, 2010.
[16] 杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法. 生物学通报, 2010, 45(2):4-6.
[17] 蒋爱军, 蒙朝亿. 龙胜县不同海拔对大叶百合产量和效益的影响. 现代农业科技, 2019(9):53-54.
[18] 耿梦娅, 陈芳清, 吕坤, 等. 长柄双花木叶性状异速生长关系随发育阶段和海拔梯度的变化. 广西植物, 2019, 39(10):1-11.
[19] 倪亚兰, 辜夕容, 邓雪梅, 等. 海拔对巫山竹贤核桃果实表型油脂品质的影响. 中国油脂, 2017, 42(2):135-140.
[20] 王亚平, 吴清辉, 柯艺萍, 等. 云南景东不同海拔烟区烟叶质量分析评价. 作物研究, 2016, 30(7):776-778,785.
[21] 马世江, 刘静, 闫刚, 等. 不同海拔高度对糯玉米甜糯2号制种效益的影响. 中国种业, 2019(1):60-63.
[22] 李春喜, 冯海生. 甜高粱在青海高原不同海拔生态区的适应性研究. 草业学报, 2013, 22(3):51-59.
[23] 康东健, 谭勇, 阚萌萌, 等. 不同海拔梯度新疆红花品质分析研究. 中药材, 2017, 40(1):127-130.
[24] 孙国超, 曹淑燕, 李清南, 等. 不同海拔对黄果柑光合作用及果实品质的影响. 湖南农业科学, 2019(1):48-51,55. 
[25] 时俊帅, 谷瑞, 陈双林, 等. 不同海拔的高节竹笋蛋白质营养品质差异分析. 江西农业大学学报, 2019, 41(2):308-315.
[26] 张有福, 廉小芳, 陈春艳, 等. 不同海拔核桃叶中非结构性碳水化合物相关指标的变化及相关分析. 植物资源与环境学报, 2019, 28(2):18-24.
[27] 刘金凤, 陆斌, 苏为耿, 等. 海拔高度对‘细香’核桃坚果经济性状及营养成分的影响. 果树学报, 2013, 30(5):779-786.
[1] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[2] Ma Chunmei, Tian Yangqing, Zhao Qiang, Li Jiangyu, Wu Xueqin. Effects of Plant Growth Regulator Compound on Cotton Yield [J]. Crops, 2022, 38(6): 181-185.
[3] Zhang Mingfa, Zhang Sheng, Teng Kai, Chen Qianfeng, Tian Minghui, Jiang Zhimin, Chao Jin, Jian Panfeng, Deng Xiaohua. Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan [J]. Crops, 2022, 38(6): 193-200.
[4] Feng Yu, Xing Baolong. Research on the Growth Characteristics and Forage Quality of Different Cowpea Varieties in Cold Region [J]. Crops, 2022, 38(6): 220-225.
[5] Li Diqin, Peng Yuanyuan, Wang Yan, Li Sijun, Peng Tianwei, Wang Qing, Li Qiang, Xie Huiya. Response of Tobacco Seedling Growth and Development to Combined Application of Brassinolide and Microbial Agents [J]. Crops, 2022, 38(4): 167-171.
[6] Xiao Mingkun, Liu Guanghua, Song Jiming, Liu Qian, Duan Chunfang, Jiang Tailing, Zhang Linhui, Yan Wei, Shen Shaobin, Zhou Yingchun, Xiong Xiankun, Luo Xin, Bai Lina, Li Yuexian. Analysis of Agronomic Characteristics of Different Cassava Varieties (Lines) and Screening of High-Yielding Varieties (Lines) [J]. Crops, 2022, 38(4): 77-82.
[7] Dong Weixin, Zhang Yuechen. Effects of Water-Nitrogen Interaction on Physiological Parameters and Yield Formation of Different Wheat Varieties [J]. Crops, 2022, 38(3): 125-133.
[8] Shi Xian, Li Hongyou, Lu Bingyue, Zhou Yun, Zhao Jiju, Zhao Mengli, Liang Jing, Meng Hengling. Physiological Responses of Three Tartary Buckwheat Varieties to Salt Stress and Evaluation of Salt Tolerance [J]. Crops, 2022, 38(3): 149-154.
[9] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
[10] Jiao Songlin, Ren Jianguo, Ouyang Hu, Ni Xianchun, Tian Maosong, Wang Junli. Effects of Combined Application of Nitrogen, Phosphorus, and Potassium Compound Fertilizer and Bacillus sp. KTS-1-1 on Physiological Characteristics, Biomass and Quality of Pseudostellaria heterophylla [J]. Crops, 2022, 38(2): 174-181.
[11] Meng Fan, Luo Jianxin, Cai Ye, Yu Ying, Yang Lei, Zhou Wanchun. Effects of Soil Available Phosphorus on Tobacco Growth and Dry Matter Accumulation and Distribution [J]. Crops, 2022, 38(2): 203-210.
[12] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[13] Liu Xin, Li Huixia, Tian Gang, Wang Yuwen, Liu Hong, Cao Jinjun, Cheng Kai, Wang Zhenhua, Liu Yongzhong, Li Wanxing. Effects of Water Control during the Whole Growth Period on the Growth Development and Quality of Millet [J]. Crops, 2021, 37(5): 181-186.
[14] Tang Zhiqiang, Zhang Liying, He Na, Ma Zuobing, Zhao Mingzhu, Wang Changhua, Zheng Wenjing, Yin Yong’an, Wang Hui. Effects of Mechanical Direct Dry Seeding on Rice Growth, Photosynthetic Characteristics and Yield [J]. Crops, 2021, 37(5): 87-94.
[15] Tang Hongqin, Li Zhongyi, Dong Wenbin, Wei Caihui, He Tieguang, Meng Yancheng, Tang Hailing, Mo Yongcheng. Effects of Different Intercropping Modes of Green Manure Replacing Chemical Fertilizer on Cassava (Manihot esculenta Crantz) Traits and Yield [J]. Crops, 2021, 37(4): 184-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[2] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years[J]. Crops, 2018, 34(4): 32 -36 .
[3] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[4] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin[J]. Crops, 2018, 34(4): 8 -12 .
[5] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties[J]. Crops, 2018, 34(4): 79 -83 .
[6] Yan Zhang,Cui Yin,Yun’e Cao. Effects of Earthworm Fermentation Broth on Fruit and Vegetables Quality[J]. Crops, 2018, 34(1): 102 -106 .
[7] Shaohui Huang,Yunma Yang,Ketong Liu,Junfang Yang,Suli Xing,Yanming Sun,Liangliang Jia. Effects of Different Fertilization Method on Wheat Yield and Fertilizer Contribution Rate in Hebei Province[J]. Crops, 2018, 34(1): 113 -117 .
[8] Zhimin Du,Yuchen Yang,Yuanye Xia,Yanlong Gong,Zhiqiang Yan,Hai Xu. Effects of Harvest Time on Quality Traits of Hybrid Japonica Rice and Inbred Japonica Rice in Northern China[J]. Crops, 2018, 34(1): 147 -151 .
[9] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[10] Kai Zhu,Fei Zhang,Fulai Ke,Yanqiu Wang,Jianqiu Zou. Effects of Planting Density on Yield and Physiological Characteristics of Sorghum Hybrids Suitable for Mechenization[J]. Crops, 2018, 34(1): 83 -87 .