Crops ›› 2024, Vol. 40 ›› Issue (1): 80-89.doi: 10.16035/j.issn.1001-7283.2024.01.011

;

Previous Articles     Next Articles

Analysis of WRKY Transcription Factor IIc Subfamily in Maize and Its Expression Profile under Drought

Wu Ying1,2(), Hu Die1,2, Li Ting1,2, Duan Qianyuan1, Wei Ningning1,2, Zhang Xinghua1,2, Xu Shutu1,2, Xue Jiquan1,2()   

  1. 1College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
    2Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
  • Received:2022-09-07 Revised:2023-05-24 Online:2024-02-15 Published:2024-02-20
  • Contact: Xue Jiquan E-mail:wuying313@nwafu.edu.cn;xjq2934@163.com

Abstract:

The members of the WRKY IIc subfamily of maize were identified by bioinformatics methods, and their physicochemical properties, chromosomal location, gene structures, protein conserved domains, cis-acting elements in the promoters were comprehensively analyzed. The expression of ZmWRKY IIc subfamily in different tissue parts and different growth and development stages under drought treatment were analyzed by using the published RNA-seq data. Furthermore, the interaction network of ZmWRKY IIc proteins was constructed. The results showed that the WRKY IIc subfamily of maize had 25 members, they were relatively conserved in evolution and could participate in the regulation of drought stress responses in different tissues and stages of growth and development. They may also interact with MYB, bHLH transcription factors and auxin regulators to resist drought stress.

Key words: Maize, WRKY IIc, Family analysis, Drought, Expression analysis

Table 1

Detailed informations of ZmWRKY IIc subfamily genes"

基因名称
Gene name
蛋白质名称
Protein name
位置
Position
可变剪切
Transcript
氨基酸数
Number of
amino acids
分子质量
Molecular
weight
理论等电点
Theoretical
pI
亚细胞定位
Subcellular
localization
总平均亲水性
Grand average of
hydropathicity
ZmWRKYIIc-1 Zm00001d033471_P001 Chr1:263620528-263621882 1 99 11 218.69 9.67 细胞核 -1.111
ZmWRKYIIc-2 Zm00001d034073_P002 Chr1:283193730-283197425 2 331 34 511.99 6.00 细胞核 -0.582
ZmWRKYIIc-3 Zm00001d002794_P001 Chr2:22815199-22820094 1 284 30 667.79 8.54 细胞核 -0.425
ZmWRKYIIc-4 Zm00001d007329_P001 Chr2:228732533-228737268 1 220 24 267.47 9.22 细胞核 -1.003
ZmWRKYIIc-5 Zm00001d039531_P001 Chr3:7394664-7395768 1 273 28 090.01 5.83 细胞核 -0.396
ZmWRKYIIc-6 Zm00001d039584_P001 Chr3:8455756-8463632 1 293 31 182.83 9.48 细胞核 -0.670
ZmWRKYIIc-7 Zm00001d041958_P001 Chr3:145661117-145663100 1 337 36 825.13 5.41 细胞核 -0.624
ZmWRKYIIc-8 Zm00001d043663_P001 Chr3:206352165-206353102 1 211 22 647.26 8.33 细胞核 -0.424
ZmWRKYIIc-9 Zm00001d043950_P001 Chr3:214609031-214612175 1 381 40 180.82 6.76 细胞核 -0.627
ZmWRKYIIc-10 Zm00001d044162_P001 Chr3:220824499-220827409 1 352 38 331.29 6.78 细胞核 -0.923
ZmWRKYIIc-11 Zm00001d049173_P001 Chr4:19025176-19028095 1 229 24 730.15 9.57 细胞核 -0.907
ZmWRKYIIc-12 Zm00001d051328_P002 Chr4:154581235-154589610 1 183 19 852.04 12.04 细胞核 -0.338
ZmWRKYIIc-13 Zm00001d013630_P001 Chr5:15863794-15865837 1 140 15 122.52 5.81 细胞核 -0.965
ZmWRKYIIc-14 Zm00001d037607_P001 Chr6:131561417-131562772 1 195 21 165.48 7.74 细胞核 -0.551
ZmWRKYIIc-15 Zm00001d038761_P001 Chr6:163995859-163996782 2 218 23 442.45 9.18 细胞核 -0.520
ZmWRKYIIc-16 Zm00001d038843_P001 Chr6:165655159-165656827 1 221 22 963.36 6.65 细胞核 -0.302
ZmWRKYIIc-17 Zm00001d039032_P001 Chr6:168945257-168948458 1 408 42 835.64 6.50 细胞核 -0.455
ZmWRKYIIc-18 Zm00001d018656_P001 Chr7:2050308-2051829 1 332 34 764.67 6.39 细胞核 -0.405
ZmWRKYIIc-19 Zm00001d008793_P001 Chr8:20528476-20529755 1 229 24 138.91 7.64 细胞核 -0.478
ZmWRKYIIc-20 Zm00001d009939_P001 Chr8:90768544-90769854 1 205 22 045.12 6.51 细胞核 -0.658
ZmWRKYIIc-21 Zm00001d010805_P001 Chr8:128361517-128362582 1 229 24 295.48 8.72 细胞核 -0.448
ZmWRKYIIc-22 Zm00001d011133_P001 Chr8:140010389-140011159 1 196 20 552.60 8.87 细胞核 -0.579
ZmWRKYIIc-23 Zm00001d011413_P001 Chr8:149844919-149847262 1 359 39 228.34 6.30 细胞核 -0.840
ZmWRKYIIc-24 Zm00001d011527_P001 Chr8:153565171-153568905 1 414 43 413.52 6.09 细胞核 -0.512
ZmWRKYIIc-25 Zm00001d012789_P001 Chr8:181008342-181010034 1 227 25 163.23 8.32 细胞核 -0.711

Fig.1

Chromosome distribution (a) and phylogenetic tree for ZmWRKY IIc subfamily (b)"

Fig.2

Gene structures of ZmWRKY IIc subfamily"

Fig.3

Conserved domains and motifs of proteins of ZmWRKY IIC subfamily"

Fig.4

Cis-acting elements in ZmWRKY IIc subfamily promoters"

Fig.5

Expression profiles of ZmWRKYs IIc subfamily leaves under drought stresses a, b and c represent the expression levels of ZmWRKY IIc of RNA-seq from three sources, taking-log2 (FPKM) as the value, and using row standardization. d: Blue represents the DEGs in V2 (two-leaf stage)-V3 (three-leaf stage) period under drought stress and the orange represents the DEGs after R1 (silking stage)."

Fig.6

Analysis of ZmWRKY IIc proteins interaction network indicates the proteins of ZmWRKY IIc subfamily, indicates other subfamily proteins of WRKY, indicates the proteins of bHLH family, represents the proteins of MYB family and indicates other related proteins. The size of each node circle represents connectivity, and the thickness of the node line represents the absolute value of the correlation coefficient."

[1] 刘亮, 陈美娟, 范婷婷. 农业气象灾害对玉米产量的影响. 新农业, 2022(6):10-11.
[2] 孙琦. 我国不同年代主推玉米品种耐旱抗病性的变化趋势. 北京: 中国农业科学院, 2012.
[3] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2):313-324.
doi: 10.1016/j.cell.2016.08.029
[4] Tran L, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004, 16(9):2481-2498.
doi: 10.1105/tpc.104.022699
[5] Leng P F, Zhao J. Transcription factors as molecular switches to regulate drought adaptation in maize. Theoretical and Applied Genetics, 2020, 133(3):1455-1465.
doi: 10.1007/s00122-019-03494-y
[6] Cai R H, Zhao Y, Wang Y F, et al. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue and Organ Culture, 2015, 119(3):565-577.
doi: 10.1007/s11240-014-0556-7
[7] Mao H D, Yu L J, Han R, et al. ZmNAC55,a maize stress- responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2016, 105:55-66.
doi: 10.1016/j.plaphy.2016.04.018
[8] Ma H Z, Liu C, Li Z X, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiology, 2018, 178(2):753-770.
doi: 10.1104/pp.18.00436
[9] Mangelsen E, Kilian J, Berendzen K W, et al. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 2008, 9(1):1-17.
doi: 10.1186/1471-2164-9-1
[10] Hu W J, Ren Q Y, Chen Y L, et al. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses. BMC Plant Biology, 2021, 21(1):1-21.
doi: 10.1186/s12870-020-02777-7
[11] Yang Z, Chi X Y, Guo F F, et al. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress- responsive gene, SbRD19, in sorghum. Journal of Plant Physiology, 2020, 153142:246-247.
[12] Ren X Z, Chen Z Z, Liu Y, et al. ABO3,a WRKY transcription factor,mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. The Plant Journal, 2010, 63(3):417-429.
doi: 10.1111/tpj.2010.63.issue-3
[13] 徐金鹏, 祁亚男, 于延冲. 盐、干旱胁迫对拟南芥WRKY71基因突变体种子萌发的影响. 山东农业科学, 2020, 52(3):34-37.
[14] Wu H L, Ni Z F, Yao Y Y, et al. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Progress in Natural Science, 2008, 18(6):697-705.
doi: 10.1016/j.pnsc.2007.12.006
[15] 郭玉敏, 张云华. 玉米ZmWRKY53基因克隆及诱导表达分析. 分子植物育种, 2020, 18(3):719-728.
[16] 郭玉敏, 张云华, 井涛, 等. 过表达玉米转录因子ZmWRKY101基因提高拟南芥植株的耐盐力. 植物生理学报, 2020, 25(9):1921-1932.
[17] Alzohairy A M. BioEdit: an important software for molecular biology. Gerf Bulletin of Biosciences, 2011, 2(1):60-61.
[18] Hall B G. Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 2013, 30(5):1229-1235.
doi: 10.1093/molbev/mst012 pmid: 23486614
[19] Chen C J, Chen H, Zhang Y, et al. Tbtools:an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009
[20] Jensen L J, Michael K, Manuel S, et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 2009, 37(1):412-416.
[21] Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1):361-362.
[22] Miao Z Y, Han Z X, Zhang T, et al. A systems approach to a spatio-temporal understanding of the drought stress response in maize. Scientific Reports, 2017, 7(1):6590.
doi: 10.1038/s41598-017-06929-y pmid: 28747711
[23] Liu Y, Zhou M Y, Gao Z X, et al. RNA-Seq analysis reveals MAPKKK family members related to drought tolerance in maize. PLoS ONE, 2015, 10(11):e0143128.
doi: 10.1371/journal.pone.0143128
[24] Yang M, Geng M Y, Shen P F, et al. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.). Plant Physiology and Biochemistry, 2019, 135:304-309.
doi: 10.1016/j.plaphy.2018.12.025
[25] Zhang H M, Zhu J H, Gong Z Z, et al. Abiotic stress responses in plants. Nature Reviews Genetics, 2021, 23(2):104-119.
doi: 10.1038/s41576-021-00413-0 pmid: 34561623
[26] Qiu Y P, Yu D Q. Overexpression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany, 2009, 65 (1):35-47.
doi: 10.1016/j.envexpbot.2008.07.002
[27] Wang C T, Ru J N, Liu Y W, et al. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. International Journal of Molecular Sciences, 2018, 19(10):3046.
doi: 10.3390/ijms19103046
[28] 李建萍.玉米转录因子ZmWRKY25的克隆及其抗逆功能分析. 长春:吉林大学, 2012.
[29] Jiang Y J, Gang L, Yu D Q. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant, 2012, 5(6):1375-1388.
doi: 10.1093/mp/sss080
[30] 蔡荣号.玉米WRKY转录因子IId亚族抗逆相关基因的鉴定及ZmWRKY17的功能分析. 合肥:安徽农业大学, 2016.
[31] Zhang T, Tan D F, Zhang L, et al. Phylogenetic analysis and drought-responsive expression profiles of the WRKY transcription factor family in maize. Agri Gene, 2017, 3:99-108.
doi: 10.1016/j.aggene.2017.01.001
[32] Alan L, Austen B, Lyndsey A, et al. Advances in the MYB- bHLH-WD Repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant and Cell Physiology, 2017, 58(9):1431-1441.
doi: 10.1093/pcp/pcx075
[33] Amato A, Cavallini E, Walker A R, et al. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. The Plant Journal, 2019, 99(6):1220-1241.
doi: 10.1111/tpj.14419 pmid: 31125454
[34] Zhao M Z, Morohashi K, Hatlestad G, et al. The TTG1-bHLH- MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development, 2008, 135(11):1991-1999.
doi: 10.1242/dev.016873
[35] Verweij W, Spelt C E, Bliek M, et al. Functionally similar WRKY proteins regulate vacuolar acidification in petunia and hair development in Arabidopsis. The Plant Cell, 2016, 28(3):786-803.
doi: 10.1105/tpc.15.00608 pmid: 26977085
[1] Feng Yong, Hou Xuguang, Xue Chunlei, Zhang Laihou, Song Guodong, Su Minli, Fu Xiaohua, Sun Yuyan. Division of Suitable Ecological Regions of Maize Varieties in Inner Mongolia [J]. Crops, 2024, 40(1): 23-30.
[2] Wang Haitao, Ren Chunmei, Dong Yan, Li Shuo, Cheng Zhaobang, Ji Yinghua. Molecular Detection and Identification of Maize Yellow Mosaic Virus on Sorghum in Huai’an, Jiangsu [J]. Crops, 2024, 40(1): 233-238.
[3] Ma Juan, Huang Lu, Yu Ting, Guo Guojun, Zhu Weihong, Liu Jingbao. Multi-Locus Genome-Wide Association Study and Genomic Prediction for General Combining Ability of Maize Ear Diameter [J]. Crops, 2024, 40(1): 31-39.
[4] Jin Yu, Guo Xinyu, Zhang Ying, Li Dazhuang, Wang Jinglu. Stomatal Phenotypic Identification and Research Progress in Maize Leaves [J]. Crops, 2023, 39(6): 1-10.
[5] Wu Qi, Ming Bo, Gao Shang, Yang Hongye, Zhang Chuan, Chu Zhendong, Li Shaokun. Research on the Construction Strategy of Maize Grain Dehydration Model in Cold Northeast China [J]. Crops, 2023, 39(6): 108-113.
[6] Bai Jinghua, Jia Xiaomei, Wu Yanqing, Wang Yuekun, Song Weiyang, Liu Yinuo. Ability of DSE against Abiotic Stresses and Improving Drought Resistance of Solanum tuberosum [J]. Crops, 2023, 39(6): 150-159.
[7] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[8] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[9] Ren Honglei, Zhang Fengyi, Han Xinchun, Hong Huilong, Zhu Xiao, Wang Guangjin, Qiu Lijuan. Drought Tolerance Evaluation of Soybean Mini Core Collections [J]. Crops, 2023, 39(6): 94-100.
[10] Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254.
[11] Yu Le, Li Lin, Huang Hongjuan, Huang Zhaofeng, Zhu Wenda, Wei Shouhui. Weed Species Composition and Community Characterization in Maize Fields in Hubei Province [J]. Crops, 2023, 39(5): 272-279.
[12] Yang Zongying, Xiao Gui, Zhang Hongwei. Whole-Genome Predictive Analysis of Fresh Weight per Plant Using the Maize F1 Population [J]. Crops, 2023, 39(5): 43-48.
[13] Qu Haitao, Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Tan Zhuo, Wang Chun, Wei Qiang, Luo Yao, Li Guangfa. Study on Genetic and Breeding Effects of 100-Grain Weight in Maize [J]. Crops, 2023, 39(5): 66-70.
[14] Yang Mi, Wang Meijuan, Xu Haitao. Study on the Dynamic Development Difference of Husk of Maize Inbred Lines in Different Ecological Regions [J]. Crops, 2023, 39(5): 81-90.
[15] Yang Cheng, Zhang Deqi, Du Simeng, Zhang Lijia, Jin Haiyang, Li Ying, Shao Yunhui, Wang Hanfang, Fang Baoting, Li Xiangdong, Liu Meijun. Effects of Dark and Strong Light Dehydration on the Photosystem Activity in Wheat Leaves in Vitro [J]. Crops, 2023, 39(5): 98-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!