Crops ›› 2025, Vol. 41 ›› Issue (1): 26-34.doi: 10.16035/j.issn.1001-7283.2025.01.004

;

Previous Articles     Next Articles

Genetic Diversity Analysis and Specificity Evaluation of Main Traits of 141 Wheat Germplasm Resources at Domestic and Foreign

Yan Qunxiang(), Pang Yuhui, Hong Zhuangzhuang, Bi Junge, Wang Chunping()   

  1. College of Agriculture, Henan University of Science and Technology, Luoyang 471000, Henan, China
  • Received:2023-12-05 Revised:2024-01-31 Online:2025-02-15 Published:2025-02-12

Abstract:

To expand the genetic reservoir of wheat and facilitate the availability of superior breeding material in China, this research employed a total of 141 wheat germplasms, encompassing both domestic and foreign cultivars. Fifteen key traits were meticulously examined and assessed through a comprehensive array of analytical techniques, including variation analysis, genetic diversity analysis, cluster analysis, and grey correlation analysis. The findings indicated that the coefficients of variation (CV) for agronomic traits spanned from 6.87% to 48.18%, the CV for length of spike neck was the largest, while the CV for total number of spikelet was the smallest. The CV for the six quality traits ranged from 2.55% to 23.90%. The CV of sedimentation value was the largest, while the CV of starch content was the smallest. The genetic diversity index (H') ranged from 1.08 to 2.09, with the lowest value observed for moisture content and the highest value observed for plant height. Cluster analysis categorized the 141 wheat germplasms into six groups, each exhibiting significantly outstanding traits. An analysis of specificity was conducted on a total of 141 wheat germplasms, the findings indicated that there were no significant distinctions observed between domestic and Mexican wheat germplasms in terms of seven major breeding traits. However, a relatively large number of differences were observed in other foreign wheat varieties. Furthermore, the wheat varieties from the United States, Europe, and Australia exhibited a relatively low grain number per spike. Additionally, the wheat germplasms from the United States exhibited the lowest 1000-kernel weight, followed by wheat germplasms from Canada and Europe. In comparison to wheat germplasms originating from other nations, Canada wheat germplasms exhibited the highest wet gluten content. Through the application of grey correlation analysis, a total of eighteen elite germplasms, namely CM98, CM26, CM84, CM99, and CM24, were identified. These varieties hold potential for breeders to discern and choose superior accessions as parental candidates within breeding programs.

Key words: Wheat, Germplasm resources, Genetic diversity, Agronomic traits, Quality traits

Table 1

The names and origins of 141 wheat germplasms"

来源Source 种质名称及编号Germplasm name and number
中国China








蚂蚱麦(CM2)、燕大1817(CM3)、蚰子麦(CM4)、北京8号(CM5)、北京10号(CM6)、东方红3号(CM7)、农大139(CM8)、丰抗2号(CM9)、丰抗8号(CM10)、京冬8号(CM11)、中麦175(CM12)、辉县红(CM13)、碧蚂1(CM14)、碧蚂4(CM15)、丰产3号(CM16)、小偃6号(CM17)、南大2419(CM18)、郑引1号(CM21)、扬麦5号(CM22)、扬麦158(CM23)、鄂恩1号(CM24)、繁6(CM25)、绵阳11(CM26)、川麦47(CM27)、内乡5号(CM28)、郑州3号(CM29)、百农3217(CM30)、豫麦2(CM31)、豫麦7(CM32)、豫麦13(CM33)、豫麦18(CM34)、豫麦21(CM35)、豫麦34(CM36)、豫麦49(CM37)、豫麦54(CM38)、郑麦9023(CM39)、周麦16(CM40)、周麦18(CM41)、新麦18(CM42)、偃展4110(CM43)、矮抗58(CM44)、周麦22(CM45)、中麦895(CM46)、泰山1号(CM47)、济南2号(CM48)、济南13号(CM49)、鲁麦1号(CM50)、鲁麦14号(CM51)、济南17(CM52)、济麦22(CM53)、冀麦30(CM54)、石4185(CM55)、邯6172(CM56)、宁春4号(CM58)、宁春5号(CM59)、中国春(A70)
CIMMYT










Sunstate(CM60)、SONALIKA(CM62)、SIETE CERROS T66(CM63)、PAVON F 76(CM64)、SERI M 82(CM65)、BACANORA T 88(CM66)、PBW343(CM67)、ATTILA(CM68)、ROELFS F2007(CM69)、BORLAUG100 F2014(CM70)、KACHU #1(CM71)、MUTUS #1(CM72)、PRL/2*PASTOR、MISR 1(CM73)、FRANCOLIN #1(CM76)、DANPHE #1(CM77)、KINGBIRD #1(CM78)、SWSR22T.B./2*BLOUK #1//WBLL1*2/KURUKU(CM79)、NADI(CM80)、CHIPAK(CM81)、MUCUY(CM82)、KACHU//KIRITATI/2*TRCH(CM83)、MUTUS//ND643/2*WBLL1(CM84)、QUAIU #1/BECARD(CM85)、KACHU*2/BECARD(CM87)、PRL/2*PASTOR//KACHU(CM88)、BAJ #1/3/TRCH/SRTU//KACHU(CM89)、ROLF07/SAUAL/5/SERI.1B//KAUZ/HEVO/3/AMAD*2/4/KIRITATI(CM90)、KACHU/SAUAL/4/ATTILA*2/PBW65//PIHA/3/ATTILA/2*PASTOR(CM91)、MUCUY//MUTUS*2/TECUE #1(CM92)、KASUKO(CM93)、KASUKO*1(CM94)、WBLL1*2/KUKUNA//KIRITATI/2*TRCH/3/BAJ #1/AKURI(CM95)、ROLF07*2/DIAMONDBIRD//TRCH/HUIRIVIS #1/3/BORL14(CM96)、KUTZ*2//KFA/2*KACHU(CM97)、CHIPAK*2/3/KSW/SAUAL//SAUAL(CM98)、KACHU//WBLL1*2/BRAMBLING*2/3/KACHU/KIRITATI(CM99)、SUP152//WBLL1*2/BRAMBLING*2/3/KSW/SAUAL//SAUAL(CM100)
美国及其他国家
The United States and other
countries



Quality(CM1)、BAXTER(A1)、WESTONIA(A2)、YITPI(A3)、KOELBIRD(A4)、PURPLE WHEAT(A5)、Sonora 64(A6)、PASTOR(A28)、AC KARMA(A8)、ALBERTA RED(A9)、HARVEST,(A11)、MARQUIS(A12)、PEWTER(A13)、RED FIFE(A14)、ULLA(A18)、TOUKO JOKIONINEN(A19)、APU (SPRING)、PROVENCE(A20)、CAILLOUX(A22)、PROMESSE(A25)、VOLCANI DD1(A27)、KONINI *PVR*(A30)、RUNAR(A31)、IG 43425(A33)、ZIMDAR(A34)、ZERNOGRADKA 8(A35)、Moro(A38)、SANSA(A39)、ALTGOLD(A43)、KARESIK(A45)、YEKTAY 406(A46)、SAKARYA(A47)、Alsen(A53)、BUCKSHOT(A54)、BURT(A55)、CHEYENNE(A56)、CHRIS(A57)、HARVEST QUEEN(A60)、HOPE(A61)、LARK(A63)、NORDIC(A66)、RED CHIEF(A67)、RELIANCE(A68)、ZAK(A69)、Jagger(CM57)

Table 2

Analysis of variations for different agronomic and quality traits of wheat germplasm resources from domestic and foreign"

指标
Index
株高
Plant
height (cm)
成穗率
Spike-setting
rate (%)
整齐度
Uniformity
穗下节间长
Internode length
below spike (cm)
穗颈长
Length of the
spike neck (cm)
穗长
Ear length
(cm)
总小穗数
Total number of
spikelets
穗粒数
Kernels per
spike
变异幅度
Variation amplitude
51.80~138.50
6.67~25.67
1.17~3.33
18.83~59.00
2.00~33.40
6.17~16.83
15.40~22.20
25.33~72.67
平均值±标准误差
Average value±error
88.41±18.71
14.84±4.10
2.28±0.49
32.91±8.36
13.78±6.64
10.61±1.70
19.06±1.31
46.99±8.35
变异系数
Coefficient of variation (%)
21.16
27.62
21.49
25.40
48.18
16.02
6.87
17.76
H' 2.09 1.96 1.93 1.89 1.92 1.96 1.99 1.99
指标
Index
千粒重
1000-kernel
weight (g)
水分
Moisture
(%)
蛋白质相对含量
Relative protein
content (%)
干面筋含量
Dry gluten
content (%)
湿面筋含量
Wet gluten
content (%)
淀粉相对含量
Relative starch
content (%)
沉降值
Sedimentation
value (mL)
变异幅度
Variation amplitude
26.67~58.98
9.04~23.33
12.49~24.75
45.05~66.09
25.03~54.05
52.56~77.96
19.42~63.47
平均值±标准误差
Average value±error
45.75±6.64
10.53±1.37
16.59±2.03
59.45±3.57
35.06±4.05
73.68±1.88
35.77±8.55
变异系数
Coefficient of variation (%)
14.51
13.01
12.23
6.01
11.55
2.55
23.90
H' 2.01 1.08 1.85 1.89 1.84 1.48 1.78

Fig.1

Cluster analysis of wheat germplasms based on the agronomic and quality traits"

Fig.2

Comparison of agronomic and quality traits among six major groups of wheat germplasms ns: no significant difference, *: P < 0.05, **: P < 0.01, ***: P < 0.001, ****: P < 0.0001."

Fig.3

Radiation maps of phenotypic specificity of different wheat germplasm rescources at home and abroad"

Table 3

Variation ranges of main traits among wheat germplasm resources of different sources"

来源
Source
种质数量
Germplasm
number
株高
Plant height
(cm)
淀粉相对含量
Relative starch
content (%)
干面筋含量
Dry gluten
content (%)
穗粒数
Kernels
per spike
千粒重
1000-kernel
weight (g)
湿面筋含量
Wet gluten
content (%)
蛋白质相对含量
Relative
protein content (%)
中国China 55 51.80~138.50 69.98~75.43 51.05~65.86 25.33~72.66 30.43~58.28 28.32~41.04 12.86~19.80
墨西哥Mexico 40 61.71~116.33 72.70~76.15 55.89~66.09 36.16~71.16 37.81~57.26 29.81~43.58 13.89~21.29
美国The United States 13 67.67~133.33 72.90~75.87 51.79~62.68 30.00~55.83 30.55~40.28 30.17~40.09 14.30~19.33
加拿大Canada 7 79.17~116.58 70.92~77.96 56.80~63.50 42.00~52.17 28.31~49.04 28.36~43.77 15.38~20.56
欧洲Europe 19 79.90~133.33 72.22~76.03 53.33~60.14 29.50~65.80 26.47~50.38 31.74~42.82 15.55~20.30
澳洲Australia 7 73.60~118.30 73.23~77.85 53.87~63.76 32.17~56.50 36.58~49.77 30.67~39.20 15.40~18.01

Table 4

Grey correlation analysis of wheat germplasm rescources"

排名
Ranking
关联度
Correlation degree
编号
Number
排名
Ranking
关联度
Correlation degree
编号
Number
排名
Ranking
关联度
Correlation degree
编号
Number
排名
Ranking
关联度
Correlation degree
编号
Number
1 0.6731 CM98 37 0.6394 A10 73 0.5995 CM80 109 0.5317 CM60
2 0.6661 CM26 38 0.6393 CM13 74 0.5994 CM45 110 0.5277 A1
3 0.6655 CM84 39 0.6377 CM53 75 0.5978 CM36 111 0.5234 A56
4 0.6644 CM99 40 0.6365 CM73 76 0.5975 CM62 112 0.5218 A8
5 0.6629 CM24 41 0.6353 CM25 77 0.5949 A54 113 0.5213 A22
6 0.6622 CM83 42 0.6348 A66 78 0.5941 A20 114 0.5205 A14
7 0.6600 CM89 43 0.6341 CM50 79 0.5940 CM12 115 0.5197 A35
8 0.6592 CM7 44 0.6333 CM37 80 0.5925 CM30 116 0.5193 A13
9 0.6587 CM71 45 0.6329 CM77 81 0.5903 CM27 117 0.5151 A53
10 0.6562 CM70 46 0.6329 CM35 82 0.5894 A31 118 0.5147 A57
11 0.6558 CM87 47 0.6319 CM57 83 0.5858 A25 119 0.5121 CM41
12 0.6557 CM74 48 0.6309 CM97 84 0.5831 CM16 120 0.5095 A5
13 0.6555 CM14 49 0.6305 CM54 85 0.5829 A34 121 0.5077 CM96
14 0.6539 CM28 50 0.6301 CM91 86 0.5826 A3 122 0.5035 A60
15 0.6525 CM1 51 0.6281 CM65 87 0.5816 CM10 123 0.5029 CM48
16 0.6525 CM66 52 0.6271 CM47 88 0.5801 A39 124 0.4994 A18
17 0.6507 CM90 53 0.6271 A33 89 0.5790 CM8 125 0.4982 A19
18 0.6500 CM34 54 0.6261 CM59 90 0.5749 CM19 126 0.4969 A38
19 0.6492 CM31 55 0.6248 CM82 91 0.5715 CM18 127 0.4957 A6
20 0.6485 CM92 56 0.6243 CM85 92 0.5705 A46 128 0.4891 A11
21 0.6483 CM79 57 0.6243 CM22 93 0.5683 A28 129 0.4872 CM38
22 0.6475 CM5 58 0.6239 CM69 94 0.5629 A55 130 0.4863 A4
23 0.6469 CM11 59 0.6236 CM78 95 0.5611 CM43 131 0.4839 A2
24 0.6469 CM88 60 0.6227 CM3 96 0.5579 CM42 132 0.4751 A69
25 0.6458 CM51 61 0.6171 CM68 97 0.5537 CM100 133 0.4733 CM40
26 0.6456 CM94 62 0.6149 CM21 98 0.5464 CM29 134 0.4708 A61
27 0.6455 CM6 63 0.6123 CM15 99 0.5451 CM4 135 0.4671 A27
28 0.6447 CM55 64 0.6085 CM2 100 0.5443 A30 136 0.4653 A63
29 0.6441 CM93 65 0.6076 CM33 101 0.5435 A47 137 0.4627 A21
30 0.6436 CM72 66 0.6076 CM63 102 0.5379 CM49 138 0.4558 A45
31 0.6425 CM76 67 0.6069 CM46 103 0.5369 CM9 139 0.4457 A43
32 0.6417 CM32 68 0.6065 CM67 104 0.5354 CM95 140 0.4411 A68
33 0.6414 CM58 69 0.6054 CM64 105 0.5350 A70 141 0.4297 CM39
34 0.6413 CM52 70 0.6030 A12 106 0.5333 A67
35 0.6399 CM56 71 0.6027 CM17 107 0.5329 CM44
36 0.6399 CM81 72 0.6026 CM20 108 0.5321 CM23
[1] 马景源. 2022年12月世界农产品供需形势预测简报. 世界农业, 2023, 525(1):133-138.
[2] 赵鹏. 引进小麦种质资源品质性状的评估. 杨凌:西北农林科技大学, 2019.
[3] Reif J C, Zhang P, Dreisigacker S, et al. Wheat genetic diversity trends during domestication and breeding. Theoretical and Applied Genetics, 2005, 110(5):859-864.
doi: 10.1007/s00122-004-1881-8 pmid: 15690175
[4] 王平. 我国种业发展的主要问题及对策探析. 中国农业科技导报, 2021, 23(11):7-16.
[5] Tanksley S D, Mccouch S R. Seed banks and molecular maps:unlocking genetic potential from the wild. Science, 1997, 277:1063-1066.
doi: 10.1126/science.277.5329.1063 pmid: 9262467
[6] 李小军, 徐鑫, 刘伟华, 等. 应用SSR分子标记分析国外种质对我国小麦品种的遗传贡献. 作物学报, 2009, 35(5):778-785.
[7] 高艳, 唐建卫, 邹少奎, 等. 小麦周麦22及其衍生品种的遗传多样性分析. 植物遗传资源学报, 2021, 22(1):38-49.
doi: 10.13430/j.cnki.jpgr.20200419002
[8] 谢静敏, 侯万伟, 张小娟. 青海省小麦品种基于55K SNP芯片的遗传多样性分析. 麦类作物学报, 2022, 42(11):1343-1350.
[9] 张凡, 刘国涛, 杨春玲. 620份小麦种质资源农艺性状调查及其遗传多样性分析. 山东农业科学, 2022, 54(3):15-21.
[10] 许娜丽, 王新华, 马冬花, 等. 251份小麦种质资源的主要农艺与品质性状遗传多样性分析. 南方农业学报, 2021, 52(9):2404-2416.
[11] 李楠楠, 杜晓宇, 韩玉林, 等. 中国四大冬小麦主产区品种农艺性状的综合性分析. 种子, 2021, 40(12):94-101.
[12] Dagnaw T, Mulugeta B, Haileselassie T, et al. Phenotypic variability, heritability and associations of agronomic and quality traits in cultivated Ethiopian durum wheat (Triticum turgidum L. ssp. Durum,Desf.). Agronomy, 2022, 12(7):1714.
[13] 程西永, 陈平, 许海霞, 等. 不同国家小麦种质资源遗传多样性研究. 麦类作物学报, 2009, 29(5):803-808.
[14] Al-Tabbal J. Variability, heritability, phenotypic and genotypic correlations and path coefficients of some agronomic characters in glaucous lines from a “Safra Maʼan” wheat landrace population. Philippine Agricultural Scientist, 2016, 99(2):142-149.
[15] 李红艳, 杨忠慧, 李绍祥, 等. 云南省田麦新品系主要农艺性状与产量的相关性和灰色关联度分析. 南方农业学报, 2023, 54(4):1077-1085.
[16] 全国农业技术推广服务中心. 农作物品种区域试验技术规程小麦:NY/T 1301-2007. 全国农业技术推广服务中心,2007
[17] 余桂红, 邢锦城, 马鸿翔, 等. 转SbPIP1基因小麦的农艺性状调查. 安徽农业科学, 2016, 44(32):27-28.
[18] 郭莹, 王振平, 吕迎春, 等. 不同麦类种质抗旱性评价及优异种质筛选. 麦类作物学报, 2022, 42(10):1208-1219.
[19] Ambati D, Phuke R M, Vani V, et al. Assessment of genetic diversity and development of coregermplasm in durum wheat using agronomic and grainquality traits. Cereal Research Communications, 2020, 48(3):375-382.
doi: 10.1007/s42976-020-00050-z
[20] 雷梦林, 刘霞, 李欣, 等. 利用农艺性状研究山西小麦地方品种的遗传代表性. 分子植物育种, 2020, 18(20):6853-6872.
[21] 倪永静, 姜晓君, 卢祖权, 等. 30份国内外小麦种质资源主要农艺性状的分析与评价. 中国农学通报, 2020, 36(3):16-22.
doi: 10.11924/j.issn.1000-6850.casb20190700380
[22] 蒋云, 张洁, 宣朴, 等. 川辐小麦品种农艺和品质性状改良演化. 四川农业大学学报, 2018, 36(5):576-583.
[23] 张会芳, 齐红志, 孙岩, 等. 黄淮冬麦区不同来源地新育成小麦品种性状多样性分析. 植物遗传资源学报, 2023, 24(3):719-731.
[24] 王掌军, 刘妍, 王志兰, 等. 宁春4号与河东乌麦杂交F2产量相关性状和抗病性及其QTL分析. 河南农业科学, 2019, 48(8):7-17.
[25] 马莹雪, 王鑫, 胡立芹, 等. 引自CIMMYT六倍体小黑麦农艺、品质性状调查及抗病性评价. 山东农业科学, 2016, 48(7):10-17.
[26] 张喜平, 宋建荣, 王伟, 等. 23个天选系冬小麦品种品质性状的多样性分析. 甘肃农业科技, 2020(8):14-18.
[27] 马国江, 马靖福, 张沛沛, 等. 128份抗旱冬小麦新品系农艺性状遗传多样性分析. 甘肃农业大学学报, 2021, 56(3):37-44.
[28] 王亚飞, 李世景, 徐萍, 等. 黄淮和长江中下游冬麦区小麦品种(系)农艺性状及其聚类分析. 中国生态农业学报, 2020, 28(3):395-404.
[29] 丁明亮, 林丽萍, 李明菊, 等. 云南育成小麦品种(系)品质性状遗传多样性分析及综合评价. 南方农业学报, 2020, 51 (2):255-266.
[30] 吴立国, 陶媛, 潘静, 等. 宁夏春小麦品种(品系)农艺性状遗传多样性分析. 现代农业科技, 2023(18):1-4.
[1] Jiang Hui, Zhong Qiaofang, Yin Fuyou, Li Jinlu, Liu Li, Zhang Yun, Wang Bo, Jiang Cong, Cheng Zaiquan, Zhang Hui, Xiao Suqin. Research Progress on Germplasm Resources and Multi-Omics of Oryza officinalis [J]. Crops, 2025, 41(2): 1-8.
[2] Tian Wenqiang, Wang Hongyi, Nie Lingfan, Sun Ganggang, Zhang Jun, Zhang Qiangbin, Yu Shan, Li Jiahao, Zhang Jinshan, Shi Shubing. The Effects of Sowing Date and Sowing Rate on the Growth, Dry Matter Accumulation and Yield of Extremely Late-Sown Wheat Population [J]. Crops, 2025, 41(2): 115-122.
[3] Zhang Shengchang, Wei Yuming, Ma Lina, Yang Zhao, Liu Wenyu, Huang Jie, Liu Huan, Yang Farong. Effects of Planting Density and Fertilization on Growth Characteristics of Forage Quinoa [J]. Crops, 2025, 41(2): 128-134.
[4] Zhao Fuyang, Ma Bo, Hu Jifang, Tan Kefei, Liu Chuanzeng, Yan Feng, Dong Yang, Hou Xiaomin, Li Qingquan, Han Yehui. Evaluation of Photoperiod Sensitivity of Japonica Rice in Cold Regions under Different Photoperiod Conditions [J]. Crops, 2025, 41(2): 135-140.
[5] Ji Jinghong, Liu Shuangquan, Ma Xingzhu, Hao Xiaoyu, Zheng Yu, Zhao Yue, Wang Xiaojun, Kuang Enjun. Effects of Different Controlled-Release Urea on Agronomic Traits, Yield and Nitrogen Use Efficiency of Cold Region Rice [J]. Crops, 2025, 41(2): 149-154.
[6] Mi Dongming, Zhou Zuoyan, Zhang Xiaoyan, Fan Zhenjie, Sun Peijie, Huang Xiao, Ren Aixia, Sun Min, Ren Yongkang. Effects of Nitrogen Application Rate on Matter Transfer and Protein Content in Black Wheat [J]. Crops, 2025, 41(2): 155-161.
[7] Lu Jing, Yu Bo, Jiang Mi, Peng Lianxin, Ren Yuanhang, Wu Qi. Assessment of Genetic Diversity in 58 Germplasm Resources of Highland Barley [J]. Crops, 2025, 41(2): 20-28.
[8] Zhao Yuanling, Tan Weiwei, Liu Zhaojun, Li Tie, Li Dongmei, Sun Minglong, Gao Fengmei, Wang Yongbin. Cultivation of New Wheat Lines with Low Lipoxygenase (LOX) Activity and Storage Tolerance by Anther Culture Technology [J]. Crops, 2025, 41(2): 40-46.
[9] Chang Hongbing, Wang Chen, He Meijing, Cao Ximin, Yu Fengfang, Cao Xiaoliang, Song Wei, Lü Aizhi. Genetic Diversity Analysis of 69 Maize Germplasm Resources Based on SSR Markers [J]. Crops, 2025, 41(2): 47-53.
[10] Zhao Lingling, Li Guifang, Cheng Chu, Zheng Mingjie, Hu Min, Zhu Jianfeng, Shen Ayi, Shen Aga, Wang Junzhen, Shao Meihong. Preliminary Report on Introduction Experiment of New Buckwheat Varieties in Zhejiang Province [J]. Crops, 2025, 41(2): 86-92.
[11] Lou Hongyao, Li Hanlin, Qin Zhilie, Qumanguli∙Kuerban , Zhu Minghui, Liu Changwen, Zhang Shengquan. Research Progress on Fertility Restoration of Photoperiod- Thermo-Sensitive Male-Sterile Wheat [J]. Crops, 2025, 41(2): 9-13.
[12] Luo Jianke, Zhang Kehou, Wang Zeyu, Zhang Pingzhen, Nan Ming. Research on the Production Performance of 18 Oat Varieties (Lines) in the Irrigation Area along the Yellow River in Baiyin City [J]. Crops, 2025, 41(2): 93-100.
[13] Liu Peiyao, Ran Liping, Yang Jiaqing, Wang Haibo, Xiong Fei, Yu Xurun. Research Progress on Morphogenesis, Physiological Characteristics, and Its External Influencing Factors in Wheat Spike [J]. Crops, 2025, 41(1): 1-9.
[14] Yang Ruping, Jia Zhen, Wei Ying, Wei Yechou, Wang Liming, Chen Guangrong, Zhang Guohong, Song Wenwen. The Relationship between the Growth Period Traits of Soybean Varieties from Various Regions of Gansu and Meteorological Factors as well as Agronomic Traits [J]. Crops, 2025, 41(1): 123-132.
[15] Yang Dandan, Han Xue, Kong Xinxin, Zhao Guoxuan, Su Yazhong, Zhao Pengfei, Jin Jianmeng, Zhao Guojian. Identification of Osmotic Stress Resistance and Analysis of Related Agronomic Traits of 71 Winter Wheat Seedlings [J]. Crops, 2025, 41(1): 243-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .