作物杂志,2016, 第5期: 124–130 doi: 10.16035/j.issn.1001-7283.2016.05.021

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

节水灌溉条件下氮肥密度互作对双季晚稻丰源优299肥料利用率的影响

龙文飞,傅志强,李海林   

  1. 湖南农业大学农学院/南方粮油作物协同创新中心,410128,湖南长沙
  • 收稿日期:2016-06-12 修回日期:2016-08-04 出版日期:2016-10-15 发布日期:2018-08-26
  • 通讯作者: 傅志强
  • 作者简介:龙文飞,硕士,研究方向为水稻高产高效栽培
  • 基金资助:
    农业公益性行业(农业)科研专项:湖南双季稻三熟区耕地培肥与合理农作制构建集成研究与示范(201503123-05);国家科技支撑计划项目:长江中游南部(湖南)水稻丰产节水节肥技术集成与示范(2013BAD07B11)

Effects of Nitrogen Application and Planting Density on Fertilizer Use Efficiency of Late Rice Fengyuanyou 299 under the Condition of Water Saving Irrigation

Long Wenfei,Fu Zhiqiang,Li Hailin   

  1. College of Agronomy,Hunan Agricultural University/Collaborative Innovation Center of Paddy Crop and Oil Crops in Southern,Changsha 410128,Hunan,China
  • Received:2016-06-12 Revised:2016-08-04 Online:2016-10-15 Published:2018-08-26
  • Contact: Zhiqiang Fu

摘要:

为构建水稻高产高效节水栽培技术模式,通过大田小区试验,研究了在节水灌溉条件下施氮量和栽植密度对双季晚稻丰源优299肥料利用率的影响。结果表明:施氮量、栽植密度及氮密互作对水稻氮磷钾素吸收和肥料利用率的影响均显著。随着施氮量的增加,水稻植株氮素与磷素吸收量呈先增长后减少的趋势,吸钾量呈现出先增加后减少再增加的趋势。随着密度的增加,植株总吸氮量与总吸钾量呈现先降低后升高的趋势,总吸磷量呈现逐步增加的趋势。低氮处理的氮肥贡献率、土壤氮素依存率、氮肥农学利用率和氮肥偏生产力最高,显著高于中氮处理;高密处理提高了氮肥吸收利用率和氮肥贡献率。水稻经济产量与茎叶氮磷钾素吸收量呈极显著正相关,与氮肥贡献率呈极显著正相关。因此,合理的施氮量和栽植密度组合(N1T3)能够形成水稻高产高效的群体结构,提高肥料利用率,进而提高水稻生产效益。

关键词: 水稻, 节水灌溉, 肥密互作, 肥料利用率

Abstract:

For building high yield and high efficiency water saving planting technology model of rice, field plot test was used to study the effect of nitrogen application and planting density under the condition of water saving irrigation on the fertilizer utilization ratio of double season late rice Fengyuanyou 299. Results indicated that amount of nitrogen application, planting density and interaction effects of nitrogen and density had great significant effects on N P K absorption and fertilizer utilization ratio. With the amount of nitrogen increasing, rice plant uptake of phosphorus and nitrogen showed a trend of firstly increase and then decrease, and potassium uptake showed an increase after the first decrease and then increase trend. As the density increases, plant total nitrogen absorption and potassium absorption showed a trend of firstly decrease and then increase, total phosphorus absorption showed a gradual increasing trend. Fertilizer contribution rate of low nitrogen fertilizer, nitrogen dependency rate in soil, nitrogen agronomic efficiency and N fertilizer partial productivity maximum, significantly higher than the medium nitrogen treatment; generally high-density processing more conducive to utilization and absorption of nitrogen fertilizer and improve the contribution rates of nitrogen fertilizer. Rice economic yield had significantly positive correlation (P<0.01) with the N P K absorption of stem and leaf and the nitrogen fertilizer contribution rate. Therefore, a reasonable amount of nitrogen application and planting density (N1T3) in rice can form a high yield and high efficiency group structure effectively, improve fertilizer utilization ratio, and improve the efficiency of rice production.

Key words: Rice, Water-saving irrigation, Interactive of fertilizer and density, Fertilizer utilization ratio

表1

氮素吸收量比较"

处理
Treatments
茎鞘吸氮量
Stem-sheath N uptake
叶吸氮量
Leaf N uptake
穗吸氮量
Spike N uptake
总吸氮量
Total N uptake
N0 T1 7.9iH 10.8hG 78.4cCD 97.1eD
T2 4.2jI 8.7iH 40.9hG 53.8gF
T3 11.1hG 11.3ghG 57.6gF 80.0fE
N1 T1 22.6fE 12.5gG 91.7bB 126.8bB
T2 22.6fE 21.0fF 67.7deE 111.3dC
T3 19.9gF 33.1abAB 59.1fgF 112.1dC
N2 T1 28.1cD 30.5cC 102.6aA 161.2aA
T2 26.0dD 21.0fF 72.2dDE 119.2cBC
T3 24.7eD 34.3aA 97.4abAB 156.4aA
N3 T1 28.9cC 28.2dD 64.5efEF 121.6bcB
T2 30.9bB 25.2eE 44.2hG 100.3eD
T3 46.2aA 32.0bcBC 83.6cC 161.8aA
F值F-values N 1 671.7** 1 293.8** 223.2** 629.7**
T 288.6** 267.8** 179.3** 327.2**
N×T 348.3** 84.8** 35.4** 66.0**
与产量相关性Correlation coefficient with yield 0.80** 0.80** 0.31 0.70**

表2

磷素吸收量比较"

处理
Treatments
茎鞘吸磷量
Stem-sheath P uptake
叶吸磷量
Leaf P uptake
穗吸磷量
Spike P uptake
总吸磷量
Total P uptake
N0 T1 1.3fDE 0.8cC 15.9cC 18.1dD
T2 1.0fE 0.5dC 11.1eEF 12.6eE
T3 1.9eD 0.7cdC 9.8fF 12.5eE
N1 T1 3.5cC 0.8cC 12.6dDE 16.9dD
T2 3.1cdC 1.4bB 23.6aA 28.0aA
T3 3.1cdC 1.9aA 13.0dD 18.1dD
N2 T1 3.3cdC 2.0aA 12.6dDE 17.8dD
T2 3.3cdC 1.4bB 17.5bBC 22.1cC
T3 2.9dC 2.1aA 17.9bB 22.9cC
N3 T1 4.2bB 1.9aA 5.8hG 11.9eE
T2 3.2cdC 1.5bB 7.3gG 11.9eE
T3 6.5aA 2.2aA 17.4bBC 26.0bB
F值F-values N 178.5** 137.0** 136.9** 118.5**
T 46.0** 44.7** 69.5** 78.8**
N×T 34.7** 14.8** 168.8** 201.7**
与产量相关性Correlation coefficient with yield 0.75** 0.79** 0.24 0.48

表3

钾素吸收量比较"

处理
Treatments
茎鞘吸钾量
Stem-sheath K uptake
叶吸钾量
Leaf K uptake
穗吸钾量
Spike K uptake
总吸钾量
Total K uptake
N0 T1 31.4fE 14.3gEF 12.1bB 57.8gF
T2 18.9gF 8.0iH 6.1fG 33.0iH
T3 30.3fE 11.2hG 7.1efFG 48.6hG
N1 T1 64.3bB 12.5hFG 9.0dDE 85.8eD
T2 66.6bB 18.1eD 12.1bB 96.8cC
T3 59.3cC 30.9aA 6.5fFG 96.7cC
N2 T1 52.6dD 22.6cC 7.8eEF 83.0eD
T2 49.1eD 16.2fDE 9.9cdCD 75.2fE
T3 56.6cC 25.2bB 19.2aA 101.0bB
N3 T1 51.8deD 20.9dC 3.5gH 76.2fE
T2 66.4bB 22.4cC 4.4gH 93.3dC
T3 79.3aA 24.7bB 11.0cBC 114.9aA
F值F-values N 901.6** 237.9** 76.1** 1 238.9**
T 61.6** 265.7** 120.4** 359.6**
N×T 84.7** 123.2** 233.0** 172.1**
与产量相关性Correlation coefficient with yield 0.90** 0.76** 0.12 0.91**

表4

氮素利用率比较"

处理
Treatments
氮肥农学利用率
NAE(kg/kg)
氮肥吸收利用率
NRE(%)
氮肥生理利用率
NPE(kg/kg)
氮肥偏生产力
NPFP(kg/kg)
氮肥贡献率
NCR(%)
土壤氮素依存率
SNDR(%)
N1 T1 10.6cB 14.3cdCD 50.0aA 49.9cC 21.3cABC 76.7aA
T2 11.8bAB 24.5aAB 27.7bcB 51.5bB 22.9abcABC 48.3efDE
T3 13.2aA 18.4bcBC 55.8aA 53.0aA 25.0aA 71.3bB
N2 T1 7.5defCDE 23.4abAB 21.4bcB 37.0eE 20.2cC 60.4cC
T2 8.2dCD 23.4abAB 22.6bcB 38.0dDE 21.6bcABC 45.1fE
T3 8.6dC 28.2a 20.6cB 38.4dD 22.3abcABC 51.1deD
N3 T1 6.2fE 10.3dD 59.0aA 29.8gG 20.9cBC 80.0aA
T2 6.8efDE 12.9dCD 32.6bB 30.6fgFG 22.1bcABC 53.5dD
T3 7.6deCDE 24.1aAB 21.4bcB 31.5fF 24.2abAB 49.4eDE
F值F-values N 414.0** 18.3** 54.8** 3 504.0** 7.4* 224.7**
T 11.5** 18.3** 13.4** 33.8** 8.3** 209.0**
N×T 0.9 9.5** 13.6** 2.3 0.3 34.7**
与产量相关性
Correlation coefficient with yield
0.53
0.29
-0.02
0.31
0.99**
-0.30
[1] 吴文革, 张洪程, 陈烨 , 等. 超级中籼杂交水稻氮素积累利用特性与物质生产. 作物学报, 2008,34(6):1060-1068.
doi: 10.3724/SP.J.1006.2008.01060
[2] 王秀斌, 徐新朋, 孙刚 , 等. 氮肥用量对双季稻产量和氮肥利用率的影响. 植物营养与肥料学报, 2013,19(6):1279-1286.
doi: 10.11674/zwyf.2015.0324
[3] 徐新朋, 周卫, 梁国庆 , 等. 氮肥用量和密度对双季稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2015,21(3):763-772.
doi: 10.11674/zwyf.2015.0324
[4] Chuan L, Ping H, Jin J , et al. Estimating nutrient uptake requirements for wheat in China. Field Crops Research, 2013,146(3):96-104.
doi: 10.1016/j.fcr.2013.02.015
[5] 晏娟, 尹斌, 张绍林 , 等. 不同施氮量对水稻氮素吸收与分配的影响. 植物营养与肥料学报, 2008,14(5):835-839.
doi: 10.11674/zwyf.2008.0503
[6] 易琼, 赵士诚, 张秀芝 , 等. 实时实地氮素管理对水稻产量和氮素吸收利用的影响. 植物营养与肥料学报, 2012,18(4):777-785.
doi: 10.11674/zwyf.2012.11466
[7] 苏祖芳, 周培南, 许乃霞 , 等. 密肥条件对水稻氮素吸收和产量形成的影响. 中国水稻科学, 2001,15(4):281-286.
[8] 汪秀志, 钱永德, 吕艳东 , 等. 施氮和密度对寒地水稻分蘖状况及产量的影响. 浙江大学学报(农业与生命科学版), 2011,37(1):69-76.
[9] 周江明, 赵琳, 董越勇 , 等. 氮肥和栽植密度对水稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2010,16(2):274-281.
doi: 10.11674/zwyf.2010.0203
[10] 李方敏, 樊小林, 陈文东 . 控释肥对水稻产量和氮肥利用效率的影响. 植物营养与肥料学报, 2005,11(4):494-500.
doi: 10.11674/zwyf.2005.0411
[11] 张福锁, 王激清, 张卫峰 , 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45(5):915-924.
doi: 10.3321/j.issn:0564-3929.2008.05.018
[12] Peng S, Cassman K G . Upper thresholds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice. Agronomy Journal, 1998,90(2):178-185.
doi: 10.2134/agronj1998.00021962009000020010x
[13] Dobermann A, Dawe D, Roetter R P , et al. Reversal of rice yield decline in a long-term continuous cropping experiment. Agronomy Journal, 2000,92(4):633-643.
doi: 10.2134/agronj2000.924633x
[14] 康绍忠 . 新的农业科技革命与21世纪我国节水农业的发展. 干旱地区农业研究, 1998,16(1):11-17.
[15] 陈敏建, 梁瑞驹, 刘玉龙 . 我国二十一世纪的水和粮食问题. 水利学报, 1999(1):1-7.
doi: 10.3321/j.issn:0559-9350.1999.01.001
[16] 茆智 . 水稻节水灌溉在节水增产防污中发挥重要作用. 中国水利, 2009(21):11-12.
[17] Tripathi R P, Kushwaha H S, Mishra R K . Irrigation requirements of rice under shallow water table conditions. Agricultural Water Management, 1986,12(1-2):127-136.
doi: 10.1016/0378-3774(86)90011-9
[18] 龙文飞, 傅志强, 钟娟 . 节水灌溉条件下施肥与密度对双季晚稻‘丰源优299’产量和稻米品质的影响. 中国农学通报, 2016,32(9):1-5.
[19] 张耀鸿, 张亚丽, 黄启为 , 等. 不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较. 植物营养与肥料学报, 2006,12(5):616-621.
doi: 10.11674/zwyf.2006.0503
[20] 樊红柱, 曾祥忠, 张冀 , 等. 移栽密度与供氮水平对水稻产量、氮素利用影响. 西南农业学报, 2010,23(4):1137-1141.
[21] 徐春梅, 周昌南, 郑根深 , 等. 施氮量和栽培密度对超级早稻不同器官氮素积累与转运及其吸收利用率的影响. 中国土壤与肥料, 2011(1):15-20.
[22] 程建峰, 戴廷波, 曹卫星 , 等. 不同类型水稻种质氮素营养效率的变异分析. 植物营养与肥料学报, 2007,13(2):175-183.
doi: 10.11674/zwyf.2007.0201
[23] 艾应伟, 刘学军, 张福锁 , 等. 不同覆盖方式对旱作水稻氮肥肥效的影响. 植物营养与肥料学报, 2003,9(4):416-419.
doi: 10.11674/zwyf.2003.0407
[24] Hao H, Wei Y, Yang X , et al. Effects of different nitrogen fertilizer levels on Fe,Mn,Cu and Zn concentrations in shoot and grain quality in rice (Oryza sativa). Rice Science, 2007,14(4):289-294.
doi: 10.1016/S1672-6308(08)60007-4
[25] 叶全宝, 张洪程, 魏海燕 , 等. 不同土壤及氮肥条件下水稻氮利用效率和增产效应研究. 作物学报, 2005,31(11):1422-1428.
[26] 万靓军, 张洪程, 霍中洋 , 等. 氮肥运筹对超级杂交粳稻产量、品质及氮素利用率的影响. 作物学报, 2007,33(2):175-182.
doi: 10.3321/j.issn:0496-3490.2007.02.001
[27] 樊小林, 廖宗文 . 控释肥料与平衡施肥和提高肥料利用率. 植物营养与肥料学报, 1998,4(3):219-223.
doi: 10.11674/zwyf.1998.0303
[28] 吴文革, 张四海, 赵决建 , 等. 氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响. 植物营养与肥料学报, 2007,13(5):757-764.
doi: 10.3321/j.issn:1008-505x.2007.05.001
[29] 陈海飞, 冯洋, 蔡红梅 , 等. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响. 植物营养与肥料学报, 2014,20(6):1319-1328.
doi: 10.11674/zwyf.2014.0601
[30] 陈佳娜, 谢小兵, 伍丹丹 , 等. 机插密度与氮肥运筹对中嘉早 17 产量形成及氮肥利用率的影响. 中国水稻科学, 2015,29(6):628-636.
doi: 10.3969/j.issn.1001-7216.2015.06.009
[31] 樊红柱, 曾祥忠, 吕世华 . 水稻不同移栽密度的氮肥效应及氮素去向. 核农学报, 2009,23(4):681-685.
[1] 姬生栋 栗 鹏 李江伟 宋刘敏 刘苗苗 高狂龙 尹海庆. 水稻株系与亲本间灌浆期POD 酶谱及遗传效应分析[J]. 作物杂志, 2018, (5): 17–20
[2] 马孟莉 郑 云 周晓梅 张婷婷 张晓倩 卢丙越. 云南哈尼梯田红米地方品种遗传多样性分析[J]. 作物杂志, 2018, (5): 21–26
[3] 陈瑛瑛 王徐艺凌 朱宇涵 武 威 刘 涛 孙成明. 水稻穗部氮素含量高光谱估测研究[J]. 作物杂志, 2018, (5): 116–120
[4] 隋阳辉, 高继平 刘彩虹, 徐正进 王延波 赵海岩. 东北冷凉地区秸秆还田方式对水稻#br# 光合、干物质积累及氮素吸收的影响[J]. 作物杂志, 2018, (5): 137–143
[5] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48–52
[6] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 69–78
[7] 曾波. 近30年来我国水稻主要品种更新换代历程浅析[J]. 作物杂志, 2018, (3): 1–7
[8] 张莉,李赞堂,王士银,麻艳超,东方阳,李学勇,徐江. 水稻氮素吸收低效型突变体osnad1的生理和遗传分析[J]. 作物杂志, 2018, (3): 68–76
[9] 唐志强,董立强,李睿,张丽颖,何娜,李跃东. 氮素与土壤类型对水稻秧苗素质及养分吸收的影响[J]. 作物杂志, 2018, (3): 141–147
[10] 赫臣,郑桂萍,赵海成,陈立强,李红宇,吕艳东,宋江. 增施腐殖酸及减量施肥对盐碱地水稻穗部性状与产量的影响[J]. 作物杂志, 2018, (3): 129–134
[11] 崔勇. 稻田水旱轮作的研究进展[J]. 作物杂志, 2018, (3): 8–14
[12] 曾波,孙世贤,王洁. 我国水稻主要品种近30年来审定及推广应用概况[J]. 作物杂志, 2018, (2): 1–5
[13] 曲歌,陈争光,王雪. 基于近红外光谱与SIMCA和PLS-DA的水稻品种鉴别[J]. 作物杂志, 2018, (2): 166–170
[14] 袁珍贵,陈平平,郭莉莉,屠乃美,易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异[J]. 作物杂志, 2018, (1): 107–112
[15] 赵璐,杨治伟,部丽群,田玲,苏梅,田蕾,张银霞,杨淑琴,李培富. 宁夏和新疆水稻种质资源表型遗传多样性分析及综合评价[J]. 作物杂志, 2018, (1): 25–34
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[3] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[4] 柏文恋,郑毅,肖靖秀. 豆科禾本科间作促进磷高效吸收利用的地下部生物学机制研究进展[J]. 作物杂志, 2018, (4): 20 –27 .
[5] 李程勋,李爱萍,徐晓俞,郑开斌. 浅谈木豆的抗逆机制及在福建的应用前景[J]. 作物杂志, 2018, (4): 28 –31 .
[6] 温辉芹,程天灵,裴自友,李雪,张立生,朱玫. 山西省近年审定小麦品种的综合性状分析[J]. 作物杂志, 2018, (4): 32 –36 .
[7] 梁海燕, 李海, 林凤仙, 张翔宇, 张知, 宋晓强. 不同糜子品种抗倒伏性田间鉴定及抗倒评价指标的筛选分析[J]. 作物杂志, 2018, (4): 37 –41 .
[8] 魏萌涵, 解慧芳, 邢璐, 宋慧, 王淑君, 王素英, 刘海萍, 付楠, 刘金荣. 华北地区谷子产量与农艺性状的综合评价分析[J]. 作物杂志, 2018, (4): 42 –47 .
[9] 何中国,朱统国,李玉发,王佰众,牛海龙,刘红欣,李伟堂,牟书靓. 吉林省花生育种现状及发展方向[J]. 作物杂志, 2018, (4): 8 –12 .
[10] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48 –52 .