作物杂志,2018, 第6期: 8995 doi: 10.16035/j.issn.1001-7283.2018.06.014
焦玉字1,郭俊娒2,杨俊兴2,李厚恩3,徐铁兵4,叶勇5,周小勇5
Jiao Yuzi1,Guo Junmei2,Yang Junxing2,Li Houen3,Xu Tiebing4,Ye Yong5,Zhou Xiaoyong5
摘要:
为筛选出富集Cd能力较强的向日葵品种,本研究采用田间原位试验,在北方典型Cd污染农田土壤(含Cd 2.22mg/kg)上,研究了28个不同向日葵品种的生长响应和富集Cd能力的差异。结果表明,不同向日葵品种地上部生物量在1 101.38~12 511.13kg/hm 2,地上部Cd含量在1.68~19.25mg/kg,生物富集系数(BCF)在0.76~8.67,地上部Cd提取量在4.17~114.20g/hm 2,均表现出较大差异。通过对向日葵地上部Cd含量的聚类分析可将28个向日葵品种分为3类,并筛选出G3、G1、Y1、G8、G12、G4、G6等品种为高富集Cd型向日葵品种。对向日葵地上部Cd提取量的分析结果表明,Y3、G24和G3品种地上部Cd提取量均达100g/hm 2以上,是修复Cd污染农田土壤较合适的品种。
[1] | Lai H Y, Su S W, Guo H Y , et al. Heavy metals contaminated soils and phytoremediation strategies in Taiwan. Soil Contamination, 2011,6:107-126. |
[2] |
Guo J, Lei M, Yang J , et al. Effect of fertilizers on the Cd uptake of two sedum species (Sedum spectabile Boreau and Sedum aizoon L.) as potential Cd accumulators. Ecological Engineering, 2017,106:409-414.
doi: 10.1016/j.ecoleng.2017.04.069 |
[3] |
Khan A G, Kuek C, Chaudhry T M , et al. Role of plants,mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 2000,41(1-2):197-207.
doi: 10.1016/S0045-6535(99)00412-9 pmid: 10819202 |
[4] |
Mcgrath S P, Lombi E, Gray C W , et al. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 2006,141(1):115-125.
doi: 10.1016/j.envpol.2005.08.022 pmid: 16202493 |
[5] |
Ghosh M, Singh S P . A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 2005,133(2):365-371.
doi: 10.1016/j.envpol.2004.05.015 pmid: 15519467 |
[6] |
Sheng X, Sun L, Huang Z , et al. Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria:implications for energy plant biomass production and phytoremediation. Journal of Environmental Management, 2012,103:58-64.
doi: 10.1016/j.jenvman.2012.02.030 pmid: 22459071 |
[7] |
Meers E, Ruttens A, Hopgood M , et al. Potential of Brassic rapa,Cannabis sativa,Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere, 2005,61(4):561-572.
doi: 10.1016/j.chemosphere.2005.02.026 pmid: 16202810 |
[8] | 张晗芝 . 蓖麻对中低度镉污染农田的修复机理研究. 北京:中国科学院大学, 2014. |
[9] | Riva G, Calzoni J . Standardisation of vegetable oils. Italian Journal of Agronomy, 2004,8(1):9-15. |
[10] |
Adesodun J K, Atayese M O, Agbaje T A , et al. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water, Air & Soil Pollution, 2010,207(1-4):195-201.
doi: 10.1007/s11270-009-0128-3 |
[11] |
Madejón P, Murillo J M, Marañón T , et al. Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill. Science of the Total Environment, 2003,307(1-3):239-257.
doi: 10.1016/S0048-9697(02)00609-5 pmid: 12711438 |
[12] |
Lin J, Jiang W, Liu D C . Accumulation of copper by roots,hypocotyls,cotyledons and leaves of sunflower (Helianthus annuus L.). Bioresource Technology, 2003,86(2):151-155.
doi: 10.1016/S0960-8524(02)00152-9 pmid: 12653280 |
[13] |
Stoica P, Viberg M . Variability in cadmium and zinc shoot concentration in 14 cultivars of sunflower (Helianthus annuus L.) as related to metal uptake and partitioning. Environmental & Experimental Botany, 2015,109(12):45-53.
doi: 10.1016/j.envexpbot.2014.07.020 |
[14] | 赵岩, 黄运新, 秦云 , 等. 植物修复土壤重金属污染的研究进展. 湖北林业科技, 2016,45(1):40-43. |
[15] | 刘戈宇, 柴团耀, 孙涛 . 超富集植物遏蓝菜对重金属吸收、运输和累积的机制. 生物工程学报, 2010,26(5):561-568. |
[16] | Yang X, Long X, Ye H , et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant & Soil, 2004,259(1-2):181-189. |
[17] |
Jiang J P, Wu L H, Na L , et al. Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. European Journal of Soil Biology, 2010,46(1):18-26.
doi: 10.1016/j.ejsobi.2009.10.001 |
[18] | 郭智 . 超富集植物龙葵(Solanum nigrum L.)对镉胁迫的生理响应机制研究. 上海:上海交通大学, 2009. |
[19] |
Liu W, Shu W, Lan C . Viola baoshanensis,a plant that hyperaccumulates cadmium. Chinese Science Bulletin, 2004,49(1):29-32.
doi: 10.1007/BF02901739 |
[20] |
Sun Y, Zhou Q, Wang L , et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials, 2009,161(2-3):808-814.
doi: 10.1016/j.jhazmat.2008.04.030 pmid: 18513866 |
[21] | Keller C, Hammer D . Alternatives for Phytoextraction:Biomass Plants versus Hyperaccumulators. Geophysical Research Abstracts, 7(03285), 2005. |
[22] |
聂发辉 . 关于超富集植物的新理解. 生态环境学报, 2005,14(1):136-138.
doi: 10.3969/j.issn.1674-5906.2005.01.029 |
[23] |
Linger P, Müssig J, Fischer H , et al. Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil:fibre quality and phytoremediation potential. Industrial Crops & Products, 2002,16(1):33-42.
doi: 10.1016/S0926-6690(02)00005-5 |
[24] |
Bonanno G, Cirelli G L, Toscano A , et al. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands:Potential applications in agriculture and forestry?. Science of the Total Environment, 2013,452(5):349-354.
doi: 10.1016/j.scitotenv.2013.02.048 pmid: 23534998 |
[25] |
Huang H G, Ning Y, Wang L J , et al. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresource Technology, 2011,102(23):11034-11038.
doi: 10.1016/j.biortech.2011.09.067 pmid: 21993327 |
[26] | 余海波, 宋静, 骆永明 , 等. 典型重金属污染农田能源植物示范种植研究. 环境监测管理与技术, 2011,23(3):71-76. |
[27] |
丁传雨, 郑远, 任学敏 , 等. 能源植物修复土壤镉污染过程中细菌群落分析. 环境科学学报, 2016,36(8):3009-3016.
doi: 10.13671/j.hjkxxb.2015.0729 |
[28] | 李思亮, 李娜, 徐礼生 , 等. 不同生境下锌镉在伴矿景天不同叶龄叶中的富集与分布特征. 土壤, 2010,42(32):153446-153452. |
[29] | 张奕斌 . 东南景天根系分泌物组成和特性研究. 杭州:浙江大学. 2014. |
[30] | 唐皓 . 水稻镉高积累材料镉积累及耐性特征研究. 成都:四川农业大学, 2016. |
[31] |
林立金, 马倩倩, 石军 , 等. 花卉植物硫华菊的镉积累特性研究. 水土保持学报, 2016,30(3):141-146.
doi: 10.13870/j.cnki.stbcxb.2016.03.025 |
[32] |
Huang J, Yang Z, Li J , et al. Cadmium accumulation characteristics of floricultural plant Cosmos bipinnata. Chemistry and Ecology, 2017,33(8):1-10.
doi: 10.1080/02757540.2016.1246544 |
[33] |
Wei S, Wang S, Zhou Q , et al. Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments. Journal of Hazardous Materials, 2010,181(1):480-484.
doi: 10.1016/j.jhazmat.2010.05.038 pmid: 20570438 |
[34] |
Dai H, Wei S, Twardowska I , et al. Hyperaccumulating potential of Bidens pilosa L. for Cd and elucidation of its translocation behavior based on cell membrane permeability. Environmental Science and Pollution Research, 2017,24(29):23161-23167.
doi: 10.1007/s11356-017-9962-9 pmid: 28828736 |
[35] |
Rivelli A R, Maria S D, Puschenreiter M , et al. Accumulation of cadmium,zinc,and copper by Helianthus annuus L.:Impact on plant growth and uptake of nutritional elements. International Journal of Phytoremediation, 2012,14(4):320-334.
doi: 10.1080/15226514.2011.620649 pmid: 22567714 |
[36] | 陈立, 王丹, 龙婵 , 等. 3种螯合剂对向日葵修复镉污染土壤的影响. 环境科学与技术, 2017(11):22-29. |
[37] |
Melo E E, Costa E T, Guilherme L R , et al. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Journal of Hazardous Materials, 2009,168(1):479-483.
doi: 10.1016/j.jhazmat.2009.02.048 pmid: 19304379 |
[38] |
范洪黎, 周卫 . 镉超富集苋菜品种(Amaranthus mangostanus L.)的筛选. 中国农业科学, 2009,42(4):1316-1324.
doi: 10.3864/j.issn.0578-1752.2009.04.023 |
[39] |
Zhuang P, Yang Q, Wang H , et al. Phytoextraction of heavy metals by eight plant species in the field. Water,Air, and Soil Pollution, 2007,184(1-4):235-242.
doi: 10.1007/s11270-007-9412-2 |
[40] | 聂惠, 安玉麟, 李素萍 . 向日葵对重金属胁迫反应及其植物修复的研究进展. 黑龙江农业科学, 2010(9):88-91. |
[41] | 马灏 . 蓖麻、向日葵对Cd和Zn污染场地的原位修复试验研究. 上海:上海大学, 2015. |
[42] | 肖璇 . 油菜和向日葵修复Pb污染土壤的研究. 杨凌:西北农林科技大学, 2009. |
[43] | 王学锋, 崔倩 . EDTA、柠檬酸对向日葵吸收重金属Cd-Ni的影响// 全国农业环境科学学术研讨会. 2007. |
[44] |
Liphadzi M S, Kirkham M B, Mankin K R , et al. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant & Soil, 2003,257(1):171-182.
doi: 10.1023/A:1026294830323 |
[1] | 马孟莉,郑云,周晓梅,张婷婷,张晓倩,卢丙越. 云南哈尼梯田红米地方品种遗传多样性分析[J]. 作物杂志, 2018, (5): 2126 |
[2] | 赵鑫,陈少锋,王慧,刘三才,杨修仕,张宝林. 晋北地区不同苦荞品种产量和品质研究[J]. 作物杂志, 2018, (5): 2732 |
[3] | 苏桂华,李春雷,苏义臣. 吉林省22份主推玉米品种区域试验评价[J]. 作物杂志, 2018, (5): 6370 |
[4] | 樊艳丽,董会,卢柏山,史亚兴,高宁,史亚民,徐丽,席胜利,张翠芬,刘焱辉. 播期对不同糯玉米品种淀粉糊化特性的影响[J]. 作物杂志, 2018, (4): 7983 |
[5] | 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 6978 |
[6] | 李少昆,张万旭,王克如,俞万兵,陈永生,韩冬生,杨小霞,刘朝巍,张国强,王浥州,柳枫贺,陈江鲁,杨京京,谢瑞芝,侯鹏,明博. 北疆玉米密植高产宜粒收品种筛选[J]. 作物杂志, 2018, (4): 6268 |
[7] | 何中国,朱统国,李玉发,王佰众,牛海龙,刘红欣,李伟堂,牟书靓. 吉林省花生育种现状及发展方向[J]. 作物杂志, 2018, (4): 812 |
[8] | 魏萌涵, 解慧芳, 邢璐, 宋慧, 王淑君, 王素英, 刘海萍, 付楠, 刘金荣. 华北地区谷子产量与农艺性状的综合评价分析[J]. 作物杂志, 2018, (4): 4247 |
[9] | 曾波. 近30年来我国水稻主要品种更新换代历程浅析[J]. 作物杂志, 2018, (3): 17 |
[10] | 曹玉巧,聂庆凯,高云,许自成黄五星,. 植物中镉及其螯合物相关转运蛋白研究进展[J]. 作物杂志, 2018, (3): 1524 |
[11] | 王克如,李少昆,王延波,赵海岩,沈玉忠,蔡丹丹,肖万欣,姜文野,黄兆福,翟立超,李璐璐,谢瑞芝,侯鹏,明博. 辽宁中部适宜机械粒收玉米品种的筛选[J]. 作物杂志, 2018, (3): 97102 |
[12] | 曾波,孙世贤,王洁. 我国水稻主要品种近30年来审定及推广应用概况[J]. 作物杂志, 2018, (2): 15 |
[13] | 曲歌,陈争光,王雪. 基于近红外光谱与SIMCA和PLS-DA的水稻品种鉴别[J]. 作物杂志, 2018, (2): 166170 |
[14] | 姜丽娜,岳影,李金娜,张雅雯,朱娅林,李春喜. 施氮量对小麦花后氮素分配及氮素利用的影响[J]. 作物杂志, 2018, (2): 8086 |
[15] | 袁珍贵,陈平平,郭莉莉,屠乃美,易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异[J]. 作物杂志, 2018, (1): 107112 |
|