作物杂志,2023, 第1期: 68–75 doi: 10.16035/j.issn.1001-7283.2023.01.010

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

灌水对节水小麦“衡观35”产量、蛋白质含量及光合性能的影响

阚茗溪(), 王艳杰, 于慧玲, 王德梅, 陶志强, 杨玉双, 王玉娇, 高甜甜, 曹祺, 赵广才, 常旭虹()   

  1. 中国农业科学院作物科学研究所/农业农村部作物生理生态重点实验室,100081,北京
  • 收稿日期:2022-01-14 修回日期:2022-09-27 出版日期:2023-02-15 发布日期:2023-02-22
  • 通讯作者: 常旭虹,主要从事小麦优质高产栽培理论与技术研究,E-mail:changxuhong@caas.cn
  • 作者简介:阚茗溪,研究方向为小麦栽培,E-mail:kanmingxi@163.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03-16);中国农业科学院科技创新工程重大科研任务(CAAS-ZDRW202002)

Effects of Irrigation on Yield, Protein Content and Photosynthetic Performance of Water-Saving Wheat “Hengguan 35”

Kan Mingxi(), Wang Yanjie, Yu Huiling, Wang Demei, Tao Zhiqiang, Yang Yushuang, Wang Yujiao, Gao Tiantian, Cao Qi, Zhao Guangcai, Chang Xuhong()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2022-01-14 Revised:2022-09-27 Online:2023-02-15 Published:2023-02-22

摘要:

水分是限制小麦产量和品质提高的关键因素。为探究不同时期灌水对冬小麦产量、农艺性状、籽粒品质及光合性能的影响,在自动防雨水肥控制池中设置4个春季水分处理:不灌水(对照,W1)、仅拔节期灌水1050m3/hm2(W2)、仅开花期灌水1050m3/hm2(W3)和拔节期525m3/hm2+开花期525m3/hm2(W4)。结果表明,W1处理籽粒蛋白质含量最高,W2处理蛋白质产量最高,W3处理籽粒产量最高,W4处理光合性能最稳定。与W1处理相比,灌水影响小麦旗叶的光合性能,使其净光合速率、气孔导度、胞间CO2浓度和蒸腾速率增大;拔节期灌水可增加叶片叶绿素含量,促进植株干物质积累,提高籽粒蛋白质产量,通过增加单位面积穗数和穗粒数而增加生物产量;开花期灌水促进籽粒长、宽增大,增大库容量,通过增加粒重而提高籽粒产量。通过比较拔节期灌水后至开花期未灌水前W1、W4和W2处理发现,灌水使最大净光合速率和光饱和点增大,暗呼吸速率减小,旗叶更加适应强光,但光合效率并不能进一步增加,并且随时间推移旗叶适应强光能力减弱。灌水量相同时,仅在开花期灌1次水或者在拔节期和开花期分2次灌水可减缓叶片后期光合性能下降,防止早衰。因此,在生产中要关注不同生育时期水分的作用,根据实际降水及生产需求及时进行灌溉。

关键词: 灌水时期, 冬小麦, 光合性能, 产量, 品质

Abstract:

Water is the key factor limiting the improvement of wheat yield and quality. In order to explore the effects of irrigation in different periods on winter wheat yield, agronomic characteristics, grain quality and photosynthetic performance, four water treatments were set under conditions of automatic rain-proof shelter that water and fertilizer were controlled: no watering (control treatment, W1), water 1050m3/ha at jointing stage (W2), water 1050m3/ha at flowering stage (W3), and water 525m3/ha at jointing stage + 525m3/ha at flowering stage (W4). The results showed that, the grain protein content of W1 treatment, the protein yield of W2 treatment and the grain yield of W3 treatment were the highest. W4 treatment had the most stable photosynthetic performance. Compared with W1 treatment, irrigation affected the photosynthetic performance of wheat flag leaves, increased its net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate. Irrigation at jointing stage increased leaf chlorophyll content, dry matter accumulation and grain protein yield, and increased biological yield by increasing the number of spikes and grains per spike. Irrigation at flowering stage could increase grain length and width, increase sink capacity, and increase grain yield by increasing weight. By comparing W1, W4 and W2 treatments after irrigation at jointing stage and before irrigation at flowering stage, it was found that irrigation increased the maximum net photosynthetic rate and light saturation point, decreased the dark respiration rate, and the flag leaf was more adapted to strong light, but could not further increase the photosynthetic efficiency, and the weakening range of flag leaf adaptation to strong light increased with time. With the same amount of irrigation, irrigation only once at flowering stage or twice at jointing stage and flowering stage could prevent the decline of photosynthetic performance and the early- senescence of leaves at the later stage. Therefore, attention should be paid to the role of water in different growth periods in production, and irrigation should be carried out in time according to the actual precipitation and production demand.

Key words: Irrigation period, Winter wheat, Photosynthetic performance, Yield, Quality

表1

不同灌水处理对产量及其构成因素的影响

水分处理
Treatment
生物产量
Biological yield
(kg/hm2)
经济系数
Economic
coefficient
单位面积穗数
Spike number
(×104/hm2)
穗粒数
Grains
per spike
千粒重
1000-grain
weight (g)
产量
Yield
(kg/hm2)
W1 13 050b 0.46b 548b 32.05c 28.95c 5913.2c
W2 20 124a 0.33c 743a 34.40a 22.31d 6666.7b
W3 13 747b 0.53a 465c 33.43b 41.26a 7326.8a
W4 14 437b 0.49ab 540b 34.35a 34.37b 7124.6a

图1

不同灌水处理对株高的影响 不同小写字母表示处理间差异显著(P < 0.05),下同

图2

不同灌水处理对籽粒长、宽的影响

表2

不同灌水处理对籽粒蛋白质的影响

处理
Treatment
清蛋白
Albumin (%)
球蛋白
Globulin (%)
醇溶蛋白
Gliadin (%)
谷蛋白
Gluten (%)
总蛋白
Total protein (%)
蛋白质产量
Protein yield (kg/hm2)
W1 3.41ab 1.62b 4.13a 5.86a 16.27a 962.75b
W2 3.68a 1.97a 4.29a 5.36ab 16.12a 1074.73a
W3 3.16b 1.56b 3.51b 4.34b 13.36b 979.11ab
W4 3.20b 1.62b 3.76ab 4.68b 14.12b 1006.16ab

图3

不同灌水处理对旗叶叶绿素SPAD值的影响

图4

不同灌水处理对旗叶光合参数的影响

图5

不同灌水处理对旗叶光响应(a)和CO2响应曲线(b)的影响

表3

不同灌水处理对旗叶光响应曲线和CO2响应曲线拟合特征参数的影响

时期
Stage
处理
Treatment
最大Pn
Maximum Pn
[μmol CO2/(m2·s)]
暗呼吸速率
Dark respiration rate
[μmol CO2/(m2·s)]
光饱和点
Light saturation
point [μmol/(m2·s)]
光补偿点
Light compensation
point [μmol/(m2·s)]
CO2饱和点
CO2 saturation
point (μmol/mol)
CO2补偿点
CO2 compensation
point (μmol/mol)
挑旗期
Flagging
W1 13.57 1.32 621 21.68 1130 72.22
W2 24.85 0.72 1795 16.47 1723 95.31
W4 14.15 1.20 809 22.51 1800 70.65
开花期
Flowering
W1 7.21 1.64 1117 103.70 900 76.86
W2 13.89 0.76 1219 27.80 1052 97.11
W4 2.42 1.09 584 78.54 1800 144.76
[1] FAO. Tracking progress on food and agriculture-related SDG indicators-2020. Global Forum on Food Security and Nutrition (FSN Forum), 2020:41-46.
[2] 孔祥彬, 白星焕, 王同芹, 等. 玉米抗(耐)旱性的分子遗传研究进展. 玉米科学, 2009, 17(5):58-60.
[3] 于振文. 作物栽培学各论. 北京: 中国农业出版社, 2013.
[4] 赵燕昊, 曹跃芬, 孙威怡, 等. 小麦抗旱研究进展. 植物生理学报, 2016, 52(12):1795-1803.
[5] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2):313-324.
doi: 10.1016/j.cell.2016.08.029
[6] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答. 中国稻米, 2016, 22(6):52-60.
doi: 10.3969/j.issn.1006-8082.2016.06.012
[7] 张木清, 陈如凯. 作物抗旱分子生理与遗传改良. 北京: 科学出版社, 2005:252-276.
[8] Katerjia N, Mastrorillib M, Hoorn J W V, et al. Durum wheat and barley productivity in saline-drought environments. European Journal of Agronomy, 2009, 31(1):1-9.
doi: 10.1016/j.eja.2009.01.003
[9] Mokhtar G, Shayesteh T, Mohammad-Eghbal G, et al. Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Industrial Crops and Products, 2013, 50:29-38.
doi: 10.1016/j.indcrop.2013.07.009
[10] Chen X, Hao M D. Low contribution of photosynthesis and water-use efficiency to improvement of grain yield in Chinese wheat. Photosynthetica, 2015, 53(4):519-526.
doi: 10.1007/s11099-015-0147-9
[11] Shahzad A, Xu Y Y, Jia Q M, et al. Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions. Agricultural Water Management, 2018, 201:207-218.
doi: 10.1016/j.agwat.2018.01.017
[12] Moussa T, Wang C, Zhang X M, et al. Leaf gas exchange, plant water relations and water use efficiency of Vigna unguiculata L. Walp. inoculated with rhizobia under different soil water regimes. Water, 2019, 11(3):498.
doi: 10.3390/w11030498
[13] Rudzani M, Diana M, Joachim M S. The effect of drought stress on yield,leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 2017, 180(2):118-125.
doi: 10.1016/j.agwat.2016.11.005
[14] Torabian S, Shakiba M R, Dabbagh M N A, et al. Leaf gas exchange and grain yield of common bean exposed to spermidine under water stress. Photosynthetica, 2018, 56(4):1387-1397.
doi: 10.1007/s11099-018-0834-4
[15] Krisztina B, Szilvia B, Péter B, et al. Changes in the photosynthetic efficiency of winter wheat in response to abiotic stress. Open Life Sciences, 2014, 9(5):519-530.
doi: 10.2478/s11535-014-0288-z
[16] 杨斌, 闫雪, 温宏伟, 等. 不同水分条件下小麦持绿表型性状评价及其与产量相关性研究. 作物杂志, 2020(4):45-52.
[17] 王月福, 于振文, 潘庆民. 不同水分处理对耐旱性不同小麦品种旗叶衰老的影响. 西北植物学报, 2002, 22(2):95-100.
[18] Samarah N H, Alqudah A M, Amayreh J A, et al. The effect of late-terminal drought stress on yield components of four barley cultivars. Journal of Agronomy and Crop Science, 2009, 195(6):427-441.
doi: 10.1111/j.1439-037X.2009.00387.x
[19] Zhao W H, Liu L Z, Shen Q, et al. Effects of water stress on photosynthesis,yield,and water use efficiency in winter wheat. Water, 2020, 12(8):2127.
doi: 10.3390/w12082127
[20] 冯志波. 灌水量和种植模式对冬小麦光合特性的影响. 泰安:山东农业大学, 2014.
[21] 刘庆芳, 马永安, 陈冬梅, 等. 灌溉次数和灌水时期对冬小麦邯麦13号产量及主要农艺性状的影响. 农业科技通讯, 2020 (8):110-114.
[22] 傅晓艺, 王红光, 刘志连, 等. 不同水分处理对小麦氮素和干物质积累与分配的影响. 麦类作物学报, 2020, 40(8):955-963.
[23] 禹静涛, 赵晨, 双丽, 等. 灌水对强筋小麦籽粒产量及营养品质的影响. 麦类作物学报, 2020, 40(12):1-10.
[24] 张舵, 李援农, 王增红, 等. 生育后期灌水量对河西春小麦产量和水分利用效率的影响. 节水灌溉, 2020(6):68-72.
[25] 佟国香, 周吉红, 毛思帅, 等. 春季不同时期灌水对小麦产量的影响. 农业科技通讯, 2021(7):169-171.
[26] 赛力汗·赛. 滴灌量调配对北疆冬小麦耗水特性及产量形成的影响研究. 北京: 中国农业大学, 2018.
[27] 李建民, 王璞, 周殿玺, 等. 灌溉制度对冬小麦耗水及产量的影响. 生态农业研究, 1999(4):25-28.
[28] 房全孝, 陈雨海, 李全起, 等. 灌溉对冬小麦灌浆期光合产物供应和转化及有关酶活性的影响. 作物学报, 2004, 30(11):1113-1118.
[29] 苏珮, 蒋纪云, 王春虎. 小麦蛋白质组分的连续提取分离法及提取时间的选择. 河南职技师院学报, 1993, 21(2):1-4,19.
[30] 马瑞琦, 陶志强, 王德梅, 等. 追氮量对强筋和中筋小麦产量与品质的影响. 植物营养与肥料学报, 2019, 25(10):1799- 1807.
[31] 王琛, 王连喜, 马国飞, 等. 宁夏灌区春小麦形态结构及干物质分配对不同时期干旱胁迫的响应. 生态学杂志, 2019, 38 (7):2049-2056.
[32] 杨程, 张德奇, 时艳华, 等. 不同灌水处理对不同抗旱型小麦品种生长发育和产量的影响. 河南农业科学, 2019, 48(5):10-15.
[33] 刘红杰, 倪永静, 任德超, 等. 不同灌水次数和施氮量对冬小麦农艺性状及产量的影响. 中国农学通报, 2017, 33(2):21-28.
[34] 居辉, 王璞, 周殿玺, 等. 不同灌溉时期的冬小麦土壤水分变化动态. 麦类作物学报, 2005, 25(3):76-80.
[35] 王亚华. 不同生育期灌水对半冬性小麦生长、产量及效益的影响. 扬州:扬州大学, 2019.
[36] 张敏, 刘添, 李亚静, 等. 减少灌水次数对强筋小麦氮素积累转运和籽粒蛋白质含量的影响. 麦类作物学报, 2019, 39(7):802-809.
[37] 任婕, 高志强, 孙敏, 等. 探墒沟播下灌水次数对冬小麦籽粒营养、加工品质的影响. 山东农业科学, 2021, 53(4):29-33.
[38] 张秋英, 李发东, 刘孟雨, 等. 不同水分条件下小麦旗叶叶绿素a荧光参数与子粒灌浆速率. 华北农学报, 2003, 18(1):26-28.
doi: 10.3321/j.issn:1000-7091.2003.01.008
[39] 李永华, 王玮, 马千全, 等. 干旱胁迫下抗旱高产小麦新品系旱丰9703的渗透调节与光合特性. 作物学报, 2003, 29(5):759-764.
[40] 张其德, 刘合芹, 张建华, 等. 限水灌溉对冬小麦旗叶某些光合特性的影响. 作物学报, 2000, 26(6):869-873.
[41] Wu X L, Bao W K. Leaf growth, gas exchange and chlorophyll fluorescence parameters in response to different water deficits in wheat cultivars. Plant Production Science, 2011, 14(3):254-259.
doi: 10.1626/pps.14.254
[42] Liu E K, Mei X R, Yan C R, et al. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agricultural Water Management, 2016, 167:75-85.
doi: 10.1016/j.agwat.2015.12.026
[43] Ma S C, Duan A W, Wang R, et al. Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation. Agricultural Water Management, 2015, 148:123-149.
doi: 10.1016/j.agwat.2014.09.028
[44] 王月福, 于振文, 潘庆民, 等. 水分处理与耐旱性不同的小麦光合特性及物质运转. 麦类作物学报, 1998, 18(3):47-50.
[45] 许振柱, 于振文, 李晖, 等. 限量灌水对冬小麦光合性能和水分利用的影响. 华北农学报, 1997, 12(2):66-71.
[46] 杜宝华, 吕学都. 土壤湿度对冬小麦光合速率的影响. 中国农业气象, 1992(4):8-11.
[47] 严韬, 朱国良, 葛非凡, 等. 阶段性干旱胁迫对小麦光合生理特性及产量结构的影响. 气象与减灾研究, 2019, 42(1):46-53.
[1] 夏玉莹, 王志君, 李红宇, 胡传军, 吕艳东, 赵海成, 郑桂萍. 育苗方式对寒地水稻秧苗素质、产量及品质的影响[J]. 作物杂志, 2023, (1): 103–108
[2] 高伟, 郝青婷, 张泽燕, 王茜, 闫虎斌, 朱慧珺, 赵雪英, 张耀文. 施氮磷肥对小豆产量、根系形态及光合特性的影响[J]. 作物杂志, 2023, (1): 109–114
[3] 王玉娇, 常旭虹, 王德梅, 王艳杰, 杨玉双, 石书兵, 赵广才. 播种方式对不同品种小麦产量和品质的影响[J]. 作物杂志, 2023, (1): 122–128
[4] 赵晶云, 吕新云, 刘小荣, 任海红, 任小俊, 马俊奎. 幼龄核桃林下带状复合间作对大豆生长及产量的影响[J]. 作物杂志, 2023, (1): 136–142
[5] 于永涛, 张楠, 谢利华, 李光玉, 刘建华, 李武, 李高科, 胡建广. 消费者在甜玉米种质食味品质鉴评中的偏好性初探[J]. 作物杂志, 2023, (1): 14–19
[6] 翟彩娇, 张蛟, 崔士友, 陈澎军, 韩继军. 盐逆境下缓/控释肥对水稻生长发育、产量和品质的影响[J]. 作物杂志, 2023, (1): 143–151
[7] 李文姗, 张俊尧, 唐江华, 徐文修, 徐清华. 艾氟迪不同滴施量对棉花生长发育及产量的影响[J]. 作物杂志, 2023, (1): 158–162
[8] 马瑞琦, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 常旭虹. 施氮量对北部冬麦区种植弱筋小麦产量与品质的影响[J]. 作物杂志, 2023, (1): 163–169
[9] 贾峥嵘, 郝佳丽, 郝艳芳, 白文斌, 张建华, 郭瑞锋, 刘勇. 四种芽孢杆菌菌剂对甘薯不同时期产量及品质的影响[J]. 作物杂志, 2023, (1): 170–175
[10] 宿翠翠, 毋玲玲, 赵玺, 施志国, 周彦芳, 魏玉杰. 种植时间对甘肃引黄灌区红花生长发育、品质及产量的影响[J]. 作物杂志, 2023, (1): 176–183
[11] 张丽霞, 郭晓彦, 史鹏飞, 聂良鹏, 凌敬伟, 申培林, 丁丽, 张琳, 吕玉虎, 潘兹亮. 旺长期干旱胁迫对红麻生长发育、产量及效益的影响[J]. 作物杂志, 2023, (1): 184–189
[12] 张勇刚, 任志广, 徐志强, 刘建国, 张晓兵, 刘化冰, 夏琛, 程昌合. 离差最大化结合BP神经网络评价烟叶化学品质[J]. 作物杂志, 2023, (1): 190–195
[13] 靳海洋, 张素瑜, 崔静宇, 李向东, 岳俊芹, 张德奇, 杨程, 方保停, 王汉芳, 秦峰. 不同施氮措施对强筋和中强筋小麦品质的调控效应[J]. 作物杂志, 2023, (1): 212–218
[14] 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. 聚天门冬氨酸和壳聚糖复配剂对东北春谷农艺性状、产量及氮素利用的影响[J]. 作物杂志, 2023, (1): 58–67
[15] 吴子帅, 刘广林, 李虎, 罗群昌, 陈传华, 朱其南. 施氮量对优质常规籼稻稻米品质的影响[J]. 作物杂志, 2023, (1): 84–88
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!