作物杂志,2024, 第1期: 90–96 doi: 10.16035/j.issn.1001-7283.2024.01.012

所属专题: 水稻专题

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同栽培措施下水稻基肥氮素利用率的15N示踪分析

谢昊1,2(), 薛张逸1,2, 束晨晨1,2, 张伟杨1,2, 张耗1,2, 刘立军1,2, 王志琴1,2, 杨建昌1,2, 顾骏飞1,2()   

  1. 1扬州大学江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点实验室,225009,江苏扬州
    2江苏省粮食作物现代产业技术协同创新中心/扬州大学农学院,225009,江苏扬州
  • 收稿日期:2022-08-02 修回日期:2023-09-15 出版日期:2024-02-15 发布日期:2024-02-20
  • 通讯作者: 顾骏飞,研究方向为水稻高产栽培技术,E-mail:gujf@yzu.edu.cn
  • 作者简介:谢昊,研究方向为水稻高产栽培技术,E-mail:347216741@qq.com
  • 基金资助:
    国家自然科学基金(31872853)

Analysis of Nitrogen Use Efficiency of Base Fertilizer of Rice under Different Crop Management Practices by Using 15N Labeling

Xie Hao1,2(), Xue Zhangyi1,2, Shu Chenchen1,2, Zhang Weiyang1,2, Zhang Hao1,2, Liu Lijun1,2, Wang Zhiqin1,2, Yang Jianchang1,2, Gu Junfei1,2()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University / Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu China
    2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops /Agricultural College, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-08-02 Revised:2023-09-15 Online:2024-02-15 Published:2024-02-20
  • Contact: Gu Junfei

摘要:

通过15N示踪分析研究基肥氮素去向,旨在为水稻氮肥高效栽培提供理论和实践依据。以武运粳24号为试验材料,采用2年田间定点试验,通过增密减氮、前氮后移、轻干湿交替灌溉、增施饼肥等栽培措施,设置5种处理(氮空白区、当地常规栽培、综合管理措施1~3),研究不同栽培措施对水稻基肥氮素利用率的影响。结果表明,25.76%基肥氮素被植株吸收,24.46%残留在土壤中,49.78%损失到环境中。与当地常规栽培相比,综合管理措施能够显著提高作物对基肥氮的吸收比例(38.8%~61.3%),降低土壤中的残留比例(10.3%~24.8%),减少基肥氮向环境中的损失比例(1.8%~18.1%)。与当地常规栽培措施相比,综合管理措施在各生育期皆具有较高的氮素积累量;显著提升了植株对基肥氮素的吸收,减少了氮素损失,显著增加了氮素向籽粒中转运,且综合管理措施能改善土壤质量,具有较高的土壤脲酶及过氧化氢酶活性。综合研究结果表明,通过优化栽培措施能够显著提高植株对氮素的吸收,改善土壤质量,增加土壤氮素库容,提高基肥氮素利用率,增加作物产量。

关键词: 水稻, 基肥氮素, 产量, 氮肥利用率

Abstract:

The 15N labeling was used to trace the fate of base fertilizer nitrogen through to provide theoretical and practical basis for the efficient nitrogen fertilizer management practices in rice. Wuyunjing 24 was used as the experimental material in a two-year field experiment. The effects of different cultivation measures on nitrogen use efficiency of rice base fertilizer were studied by using five treatments (nitrogen blank area, local conventional cultivation, and comprehensive management measures 1-3), such as increasing density and reducing nitrogen, shifting nitrogen before and after, light dry and wet alternate irrigation, and increasing cake fertilizer. The results showed that 25.76%, 24.46%, and 49.78% of the nitrogen from the base fertilizer were absorbed by the plants, remained in the soil, and lost to the environment, respectively. Compared with local farmers’ practice, integrated crop management can significantly increase the uptake ratio of basal nitrogen fertilizer by crops (38.8%-61.3%), reduce the residual ratio in soil (10.3%-24.8%), and reduce the ratio of basal nitrogen fertilizer entering the environment (1.8%-18.1%). Compared with the local farmers’ practice, the integrated crop management had higher nitrogen accumulations all the growth stages; the integrated crop management significantly improved the nitrogen absorption of the basal fertilizer by the plants, reduced the nitrogen loss, and significantly increased the partitioning of nitrogen to the grains. The integrated crop management practices also improved soil quality, the activities of soil urease and catalase. The comprehensive research results showed that the nitrogen absorption of plants, the soil quality, the nitrogen storage capacity of soil, the nitrogen utilization rate of base fertilizer and the yield could be significantly increased by optimizing cultivation measures.

Key words: Rice, Basal fertilizer nitrogen, Yield, Nitrogen use efficiency

表1

各处理栽培措施一览表

处理
Treatment
N 密度
Density (cm×cm)
水分管理
Water management
菜籽饼肥
Rapeseed cake fertilizer (kg/hm2)
总量Total amount (kg/hm2) 比例Rate
0N 0 0 13.3×30 常规灌溉 0
LFP 300 5:2:2:1 13.3×30 常规灌溉 0
ICM1 270 4:2:2:2 10.7×30 常规灌溉 0
ICM2 270 4:2:2:2 10.7×30 轻干湿交替灌溉 0
ICM3 270 4:2:2:2 10.7×30 轻干湿交替灌溉 2 250

表2

不同处理对水稻产量及其构成因素的影响

年份
Year
处理
Treatment
穗数
Number of
panicles
穗粒数
Number of spikelets
per panicle
总颖花数
Total spikelets
(×104/m2)
结实率
Seed-setting
rate (%)
千粒重
1000-seed
weight (g)
产量
Yield
(t/hm2)
氮肥回收利用率
Nitrogen recovery
efficiency (%)
2018 0N 166.34e 138.49d 2.30e 90.77a 27.77a 5.81e
LFP 259.23d 165.31a 4.29d 84.28bc 26.56bc 9.60d 27.33d
ICM1 273.93c 163.91bc 4.49c 85.16bc 26.68bc 10.19c 34.26c
ICM2 291.24b 162.75bc 4.74b 85.87bc 26.72bc 10.88b 37.75b
ICM3 311.24a 160.97c 5.01a 86.89ab 26.88bc 11.70a 39.26a
2019 0N 164.82e 135.45b 2.23e 91.85a 28.85a 5.92d
LFP 257.69d 167.20a 4.31d 86.51bc 26.47b 9.87c 23.56d
ICM1 269.22c 166.58a 4.48c 85.83c 26.52b 10.12c 29.66c
ICM2 285.11b 167.85a 4.78b 86.81b 27.15b 11.01b 31.44b
ICM3 306.60a 164.50a 5.04a 87.01b 26.51b 11.63a 33.56a

图1

不同处理对氮素积累量与吸收量影响PTS:分蘖前期;LTS:分蘖末期;PI:穗分化期;MA:成熟期。同一栏内不同字母表示不同处理间在P < 0.05水平上差异显著。下同。

表3

不同处理下基肥氮素去向分析

年份
Year
处理
Treatment
植株吸收的基肥氮
Basal N fertilizer absorbed by plant
土壤残留的氮
Residual N in soil
损失的氮
Unaccounted N loss
(kg N/hm2) % (kg N/hm2) % (kg N/hm2) %
2018 LFP 30.04b 20.02c 42.35a 28.23a 77.62a 51.75a
ICM1 30.41b 28.16b 27.23b 25.21b 50.36b 46.63b
ICM2 33.49a 31.01a 26.47b 24.51bc 48.04b 44.48bc
ICM3 34.88a 32.29a 27.35b 25.32b 45.78b 42.39c
2019 LFP 25.89c 17.26c 40.76a 27.17a 83.36a 55.57a
ICM1 25.88c 23.96b 23.19b 21.47bc 58.94b 54.57a
ICM2 27.96bc 25.89ab 22.08b 20.44c 57.96b 53.67a
ICM3 29.72a 27.52a 25.19b 23.32b 53.09c 49.16b

表4

不同处理下基肥氮素在植株体内的分配

年份
Year
处理
Treatment
根吸收的氮
N absorbed by roots
叶吸收的氮
N absorbed by leaves
茎吸收的氮
N absorbed by stems
穗吸收的氮
N absorbed by panicles
(kg N/hm2) % (kg N/hm2) % (kg N/hm2) % (kg N/hm2) %
2018 LFP 1.76b 5.86a 5.57c 18.54a 6.98b 23.24b 15.73d 52.36c
ICM1 1.82b 5.98a 5.63c 18.51a 7.05b 23.18bc 15.91c 52.32c
ICM2 1.96a 5.85a 5.77b 17.23b 7.97a 23.80a 17.79b 53.12b
ICM3 2.02a 5.79a 5.88a 16.86c 8.03a 23.02c 18.95a 54.33a
2019 LFP 1.48a 5.72a 5.02c 19.39a 6.03c 23.29ab 13.36c 51.60c
ICM1 1.45a 5.60a 5.01c 19.36a 5.97c 23.07b 13.45c 51.97bc
ICM2 1.53a 5.47a 5.22b 18.67b 6.57b 23.50a 14.64b 52.36ab
ICM3 1.58a 5.32a 5.52a 18.57b 6.92a 23.28ab 15.70a 52.83a

图2

基肥氮素吸收量及占总吸氮量的比例

图3

不同栽培措施下土壤酶活性

[1] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7):1273-1289.
doi: 10.3864/j.issn.0578-1752.2014.07.004
[2] 凌启鸿, 张洪程, 蔡建中, 等. 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993, 26(6):1-11.
[3] Wang X, Wu W, Liao Y. Mitigating ammonia volatilization and increasing nitrogen use efficiency through appropriate nitrogen management under supplemental irrigation and rain-fed condition in winter wheat. Agricultural Water Management, 2021, 255:107050.
doi: 10.1016/j.agwat.2021.107050
[4] 陈惠哲, 朱德峰, 林贤青, 等. 促花肥施氮对超级杂交稻冠层叶片生长及光合速率的影响. 湖南农业大学学报(自然科学版), 2007, 33(5):617-621.
[5] 田永超, 曹卫星, 王绍华, 等. 不同水、氮条件下水稻不同叶位水、氮含量及光合速率的变化特征. 作物学报, 2004, 30(11):1129-1134.
[6] Gu J, Yang J. Nitrogen (N) transformation in paddy rice field: Its effect on N uptake and relation to improved N management. Crop and Environment, 2022, 1(1):7-14.
doi: 10.1016/j.crope.2022.03.003
[7] 田昌玉, 孙文彦, 林治安, 等. 氮肥利用率的问题与改进. 中国土壤与肥料, 2016(4):9-16.
[8] 仇景涛, 吴壮, 蒋天昊, 等. 不同生育时期氮肥减施对水稻群体生产特征的影响及减肥策略初步分析. 扬州大学学报(农业与生命科学版), 2020, 41(3):52-58.
[9] 侯静华, 李良君, 杜晓宁. 稳定性同位素15N在我国农业研究中的应用. 化肥工业, 2003(6):11-13.
[10] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000:30-109.
[11] Wang D Y, Xu C M, Yan J X, et al. 15N tracer-based analysis of genotypic differences in the uptake and partitioning of N applied at different growth stages in transplanted rice. Field Crops Research, 2017, 211:27-36.
doi: 10.1016/j.fcr.2017.06.017
[12] 李鹏飞, 李小坤, 侯文峰, 等. 应用15N示踪技术研究控释尿素在稻田中的去向及利用率. 中国农业科学, 2018, 51(20):3961-3971.
doi: 10.3864/j.issn.0578-1752.2018.20.014
[13] Tabatabai M A. Enzymes Methods of soil analysis// Weaver R W, Augle S, Bottomly P J, et al. Microbiological and Biochemical Properties, No. 5. Soil Science Society of America Madison, 1994:775-833.
[14] Johnson J L, Temple K L. Some variables affecting the measurement of “catalase activity” in soil. Soil Science Society of America Journal, 1964, 28(2):207-209.
doi: 10.2136/sssaj1964.03615995002800020024x
[15] 李艳, 唐良梁, 陈义, 等. 施氮量对水稻氮素吸收、利用及损失的影响. 土壤通报, 2015, 46(2):392-397.
[16] 贺帆, 黄见良, 崔克辉, 等. 实时实地氮肥管理对不同杂交水稻氮肥利用率的影响. 中国农业科学, 2008, 41(2):470-479.
[17] 宫亮, 金丹丹, 牛世伟, 等. 长期定位氮肥减施对水稻产量和氮素吸收利用的影响. 中国稻米, 2022, 28(3):42-46.
doi: 10.3969/j.issn.1006-8082.2022.03.007
[18] 孙会峰, 周胜, 付子轼, 等. 秸秆与缓释肥配施对水稻产量及氮素吸收利用率的影响. 中国稻米, 2015, 21(4):95-98.
doi: 10.3969/j.issn.1006-8082.2015.04.021
[19] 褚光, 展明飞, 朱宽宇, 等. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42(7):1026-1036.
[20] 吴珊眉, 倪苗娟. 有机―无机态肥氮在微型农业生态系统的转移和循环研究. 应用生态学报, 1990, 1(1):67-74.
[21] 李婷婷. 干湿交替灌溉对水稻土壤性状、根系生长和产量形成的影响. 扬州:扬州大学, 2020.
[22] 张翰林, 郭惠宝, 杨业凤, 等. 化肥有机肥配施对稻麦轮作系统作物产量和土壤肥力的影响. 上海农业学报, 2022, 38(3):48-53.
[1] 季平, 刘金龙, 柳浩, 匡佳丽, 叶世河, 龙莎, 杨洪涛, 彭勃, 徐晨, 刘晓龙. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J]. 作物杂志, 2024, (1): 117–125
[2] 周镇磊, 刘建明, 曹东, 刘宝龙, 王东霞, 张怀刚. 不同燕麦品种草产量、农艺性状和饲草品质的比较[J]. 作物杂志, 2024, (1): 132–140
[3] 熊昕, 邓俊, 尚李岩, 盛添, 叶佳雨, 刘子琛, 黄礼英, 张运波. 氮钾肥互作对杂交稻产量和辐射利用效率的影响[J]. 作物杂志, 2024, (1): 166–173
[4] 王晓蕾, 张云鹤, 牟金猛, 高大鹏, 耿艳秋, 曹译文, 卢芬, 关政闻, 邵玺文, 郭丽颖. 苏打盐碱胁迫对水稻光合特性及产量的影响[J]. 作物杂志, 2024, (1): 193–203
[5] 邵美红, 朱德峰, 程思明, 程楚, 徐群英, 胡潮水. 早稻叠盘出苗育秧机插的秧苗质量及产量研究[J]. 作物杂志, 2024, (1): 229–232
[6] 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展[J]. 作物杂志, 2024, (1): 8–15
[7] 王洪博, 唐茂淞, 李国辉, 高阳, 王兴鹏. 基于Logistic模型的南疆无膜滴灌棉花产量模型构建与评价[J]. 作物杂志, 2024, (1): 97–103
[8] 刘哲文, 郭丹丹, 常旭虹, 王德梅, 王艳杰, 杨玉双, 刘希伟, 王玉娇, 石书兵, 赵广才. 强筋小麦花后氮素积累和转运对氮肥追施时期和比例的响应[J]. 作物杂志, 2023, (6): 114–120
[9] 周旭, 何晓蕾, 曹亮, 李多, 傅晨野, 张明聪, 张玉先, 王孟雪. 苗期不同程度水分胁迫及复水处理对大豆抗氧化特性及产量的影响[J]. 作物杂志, 2023, (6): 135–142
[10] 杨善伟, 梁仁敏, 赵海红, 韦贵剑, 贺登美, 黄徐谋, 胡忠银, 韦春项, 许畅, 韦敏超, 魏爽, 罗继腾, 徐莹莹, 张秀花, 韩亦, 王士强. 孕穗期低温胁迫对优质香稻产量及其构成因素的影响[J]. 作物杂志, 2023, (6): 143–149
[11] 刘希伟, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 小麦生育中后期干旱高温对籽粒产量形成过程的影响机制及缓解措施[J]. 作物杂志, 2023, (6): 17–25
[12] 董好胜, 王琦, 闫鹏, 许艳丽, 张薇, 卢霖, 董志强. 乙矮合剂对谷子茎秆抗倒伏能力及产量的影响[J]. 作物杂志, 2023, (6): 181–189
[13] 梁忠宇, 薛军, 张国强, 明博, 沈东萍, 方梁, 周林立, 张玉芹, 杨恒山, 王克如, 李少昆. 水肥一体化施磷量对玉米抗倒伏能力的影响[J]. 作物杂志, 2023, (6): 190–194
[14] 段俊雅, 赵园园, 韦建玉, 王德勋, 王政, 王婷婷, 史宏志. 叶面喷施聚天冬氨酸对烤烟生长及产量和质量的影响[J]. 作物杂志, 2023, (6): 195–201
[15] 许世豪, 赵春波, 皇甫丽云, 范欣桐, 陈姗姗, 韩忠才, 韩玉珠. 不同钾源对马铃薯钾营养积累、转运及产量因子的影响[J]. 作物杂志, 2023, (6): 202–208
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!