作物杂志,2024, 第2期: 9–14 doi: 10.16035/j.issn.1001-7283.2024.02.002

• 专题综述 • 上一篇    下一篇

麦类作物蓝粒性状遗传与调控机制研究进展

李红艳1(), 姚晓华1,2, 姚有华1,2, 李新1,2, 吴昆仑1,2()   

  1. 1青海大学农林科学院,810016,青海西宁
    2青海省青稞遗传育种重点实验室/国家麦类改良中心青海青稞分中心/青藏高原种质资源研究与利用实验室,810016,青海西宁
  • 收稿日期:2023-02-03 修回日期:2023-05-11 出版日期:2024-04-15 发布日期:2024-04-15
  • 通讯作者: 吴昆仑,主要从事青稞遗传育种研究,E-mail:wklqaaf@163.com
  • 作者简介:李红艳,主要从事青稞遗传育种研究,E-mail:1286068155@qq.com
  • 基金资助:
    国家自然科学基金(31960427);国家大麦产业技术体系(CARS-05-01A-05)

Advances in Genetic and Regulatory Mechanisms of Blue Grain Traits in Wheat Crops

Li Hongyan1(), Yao Xiaohua1,2, Yao Youhua1,2, Li Xin1,2, Wu Kunlun1,2()   

  1. 1Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
    2Qinghai Key Laboratory of Hulless Barley Genetics and Breeding / Qinghai Subcenter of National Hulless Barley Improvement / Laboratory for Research and Utilization of Qinghai-Tibet Plateau Germplasm Resources, Xining 810016, Qinghai, China
  • Received:2023-02-03 Revised:2023-05-11 Online:2024-04-15 Published:2024-04-15

摘要:

麦类作物是我国主要的粮食作物,大部分麦类作物籽粒的种皮、果皮或胚乳因花青素的积累表现出蓝、紫、黄或黑等不同颜色。蓝粒麦类作物含有许多优异的品质性状。本文从麦类作物籽粒颜色的分类、蓝色的籽粒品质、蓝粒性状的形成及遗传方式、基因定位和调控机制方面进行综述,并提出了展望,为进一步认识和利用蓝粒麦类作物提供参考,也为麦类作物蓝粒性状基因的精细定位和形成机制研究提供依据。

关键词: 麦类作物, 蓝粒性状, 品质, 遗传, 调控机制

Abstract:

Wheat crops are the main grain crops in China, and the colors of seed coats, pericap, or endosperms of most wheat grains show blue, purple, yellow, black and other hues due to the accumulation of anthocyanins. Crops of blue grain wheat have a lot of superior qualities. This paper reviewed and explored the formation and inheritance of blue grain characteristic, the classification of grain color, the quality of blue grain, the gene mapping and regulation mechanism of blue grain trait of wheat crops, and the basis for the fine mapping and formation mechanism of blue grain trait genes of wheat crops. These findings will help people understand and utilize blue grain wheat crops better.

Key words: Wheat crops, Blue grain traits, Quality, Heredity, Regulatory mechanisms

表1

不同麦类作物种子颜色及调控基因

项目Item 玉米Maize 大麦Barley 小麦Wheat (小)黑麦Triticale
组织Tissue 糊粉层 糊粉层 糊粉层 糊粉层
色素种类Pigment species 花青素 花青素 花青素 花青素
种子颜色Seed color 蓝色 蓝色 蓝色 绿色(蓝色)
调控基因/候选基因
Regulatory gene/candidate gene
MYB C1 HvMYB4H
bHLH R1 HvMYC4H ThMYC4E TsMYC2
[1] 葸玮, 郝晨阳, 李甜, 等. 基因组时代―麦类基因组学研究现状及趋势. 植物遗传资源学报, 2022, 23(4):929-942.
doi: 10.13430/j.cnki.jpgr.20211227005
[2] Zeng X Q, Guo Y, Xu Q J, et al. Origin and evolution of qingke barley in Tibet. Nature Communications, 2018, 9(1):5433.
doi: 10.1038/s41467-018-07920-5 pmid: 30575759
[3] 汪颖. 我国小麦抗旱性研究进展. 园艺与种苗, 2011(2):95-97.
[4] Lachman J, Martinek P, Kotikova Z, et al. Genetics and chemistry of pigments in wheat grain-A review. Journal of Cereal Science, 2017, 74:145-154.
doi: 10.1016/j.jcs.2017.02.007
[5] Anastasiya G, Tatjana K, Mursalimov S, et al. Effects of combining the genes controlling anthocyanin and melanin synthesis in the barley grain on pigment accumulation and plant development. Agronomy, 2022, 12(1):112.
doi: 10.3390/agronomy12010112
[6] 刘迎春, 周青平. 燕麦研究最新进展. 青海科技, 2011, 18(6):20-23.
[7] 郑殿升. 中国燕麦的多样性. 植物遗传资源学报, 2010, 11(3):249-252.
doi: 10.13430/j.cnki.jpgr.2010.03.001
[8] Bauer E, Schmutzer T, Barilar I, et al. Towards a whole-genome sequence for rye (Secale cereale L.). Plant Journal, 2017, 89(5):853-869.
doi: 10.1111/tpj.2017.89.issue-5
[9] 曾雪, 杨足君, 李光蓉, 等. 非洲黑麦染色体特异性标记的建立与应用. 遗传, 2008(8):1056-1062.
[10] Guo T L, Horvath C, Chen L, et al. Understanding the nutrient composition and nutritional functions of highland barley (Qingke): A review. Trends in Food Science & Technology, 2020, 103:109-117.
[11] 白羿雄, 姚晓华, 姚有华, 等. 适度水分亏缺管理提高青稞营养品质和环境效益. 植物营养与肥料学报, 2018, 24(2):499-506.
[12] Yang X J, Dang B, Fan M T. Free and bound phenolic compound content and antioxidant activity of different cultivated blue highland barley varieties from the Qinghai-Tibet Plateau. Molecules, 2018, 23(4):879.
doi: 10.3390/molecules23040879
[13] 吴昆仑. 青稞早抽穗性状的遗传分析与直链淀粉含量的分子标记. 成都: 四川农业大学, 2018.
[14] 王珊珊, 谷海涛, 谢慧芳, 等. 113份饲草型六倍体小黑麦种质饲草产量与品质性状的评价. 草业学报, 2023, 32(1):192-202.
doi: 10.11686/cyxb2022011
[15] Li H, Guo X X, Wang C Y, et al. Spontaneous and divergent hexaploid triticales derived from common wheat×rye by complete elimination of D-genome chromosomes. PLoS ONE, 2015, 10 (3):e0120421.
doi: 10.1371/journal.pone.0120421
[16] Abdel-Aal E S M, Young J C, Rabalski I, et al. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry, 2006, 54(13):4696-4704.
doi: 10.1021/jf0606609 pmid: 16787017
[17] Jia Y, Selva C, Zhang Y, et al. Uncovering the evolutionary origin of blue anthocyanins in cereal grains. Plant Journal, 2020, 101(5):1057-1074.
doi: 10.1111/tpj.v101.5
[18] Zykin P A, Andreeva E A, Lykholay A N, et al. Anthocyanin composition and content in rye plants with different grain color. Molecules, 2018, 23(4):948.
doi: 10.3390/molecules23040948
[19] Burešová V, Kopecký D, Bartoš J, et al. Variation in genome composition of blue-aleurone wheat. Theoretical and Applied Genetics, 2015, 128(2):273-282.
doi: 10.1007/s00122-014-2427-3 pmid: 25399318
[20] 徐萍, 张正斌, 张锦鹏, 等. 彩色小麦基因发掘和种质资源育种利用. 植物遗传资源学报, 2022, 23(6):1549-1571.
[21] Strygina K V, Börner A, Khlestkina E K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biology, 2017, 17(S1):184.
doi: 10.1186/s12870-017-1122-3
[22] Barbro I S. Genetic control of flavonoid biosynthesis in barley. Hereditas, 1993, 119(2):187-204.
doi: 10.1111/j.1601-5223.1993.00187.x
[23] Zeven A C. Wheats with purple and blue grains: A Review. Euphytica, 1991, 56:243-258.
doi: 10.1007/BF00042371
[24] Jia Q J, Zhu J H, Wang J M, et al. Genetic mapping and molecular marker development for the gene Pre2 controlling purple grains in barley. Euphytica, 2016, 208(2):215-223.
doi: 10.1007/s10681-015-1593-y
[25] Suriano S, Iannucci A, Codianni P, et al. Phenolic acids profile, nutritional and phytochemical compounds, antioxidant properties in colored barley grown in southern Italy. Food Research International, 2018, 113:221-233.
doi: S0963-9969(18)30518-0 pmid: 30195516
[26] Shoeva O Y, Mock H P, Kukoeva T V, et al. Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of hordeum vulgare. PLoS ONE, 2016, 11(10):e0163782.
doi: 10.1371/journal.pone.0163782
[27] Naneli I. Determination of selected engineering traits of some oat (Avena sativa L.) varieties. Fresenius Environmental Bulletin, 2022, 31(8):8214-8221.
[28] 苏乐平. 基于SLAF-seq的青稞黑粒基因的挖掘及候选基因的功能验证. 西宁: 青海大学, 2020.
[29] Humphries J M, Graham R D, Mares D J. Application of reflectance colour measurement to the estimation of carotene and lutein content in wheat and triticale. Journal of Cereal Science, 2004, 40(2):151-159.
doi: 10.1016/j.jcs.2004.07.005
[30] 李国明. 小黑麦蓝粒性状的遗传分析与候选基因的功能验证. 西宁: 青海师范大学, 2019.
[31] 李杏普, 兰素缺, 刘玉平. 蓝、紫粒小麦籽粒色素及其相关生理生化特性的研究. 作物学报, 2003, 29(1):157-158.
[32] Sharifah N, Syed J, Johanna B, et al. Increased anthocyanin content in purple pericarp×blue aleurone wheat crosses. Plant Breeding, 2013, 132(6):546-552.
doi: 10.1111/pbr.2013.132.issue-6
[33] 谢景梅, 马永甫, 胡雪琴, 等. 蓝、紫粒小麦籽粒蛋白营养及抗氧化性研究. 西南师范大学学报: 自然科学版, 2010, 35(3):197-203.
[34] Wang X, Zhang X C, Hou H X, et al. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Research International, 2020, 138:109711.
doi: 10.1016/j.foodres.2020.109711
[35] 仇菊, 刘鹏, 孙君茂. 彩色马铃薯营养保健功能及其食品开发研究进展. 食品与机械, 2016, 32(10):226-229.
[36] 丁艳慧, 席杏媛, 宗渊, 等. 调控蓝色大麦花青素合成代谢的MYC基因克隆及序列分析. 分子植物育种, 2020, 18(1):25-30.
[37] Liu Z H, Liu Y X, Pu Z E, et al. Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnology Letters, 2013, 35(11):1765-1780.
doi: 10.1007/s10529-013-1277-4 pmid: 23881316
[38] Fairs D G. Physiology and genetics of the kernel color of barley. Columbia: University of British Columbia, 1955.
[39] Dang B, Zhang W G, Zhang J, et al. Evaluation of nutritional components, phenolic composition, and antioxidant capacity of highland barley with different grain colors on the Qinghai Tibet Plateau. Foods, 2022, 11(14):2025.
doi: 10.3390/foods11142025
[40] Li L Y, Pan M, Pan S J, et al. Effects of insoluble and soluble fibers isolated from barley on blood glucose, serum lipids, liver function and caecal short-chain fatty acids in type 2 diabetic and normal rats. Food and Chemical Toxicology, 2020, 135:110937.
doi: 10.1016/j.fct.2019.110937 pmid: 31682932
[41] Suriano S, Savino M, Codianni P, et al. Anthocyanin profile and antioxidant capacity in coloured barley. International Journal of Food Science & Technology, 2019, 54(7):2478-2486.
[42] Lin S, Guo H, Gong J D B, et al. Phenolic profiles, beta-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. Journal of Cereal Science, 2018, 81:69-75.
doi: 10.1016/j.jcs.2018.04.001
[43] Manisalidis I, Stavropoulou E, Stavropoulos A, et al. Environmental and health impacts of air pollution: A Review. Frontiers in Public Health, 2020, 8:14.
doi: 10.3389/fpubh.2020.00014 pmid: 32154200
[44] Jin H M, Dang B, Zhang W G, et al. Polyphenol and anthocyanin composition and activity of highland barley with different colors. Molecules, 2022, 27(11):3411.
doi: 10.3390/molecules27113411
[45] Alam M A, Islam P, Subhan N, et al. Potential health benefits of anthocyanins in oxidative stress related disorders. Phytochemistry Reviews, 2021, 20:705-749.
doi: 10.1007/s11101-021-09757-1
[46] Doshi K, Eudes F, Laroche A, et al. Anthocyanin expression in marker free transgenic wheat and triticale embryos. In Vitro Cellular & Developmental Biology-Plant, 2007, 43(5):429-435.
[47] Juha M P, Jarkko H, Tuula K, et al. Flavonoids, anthocyanins, phenolamides, benzoxazinoids, lignans and alkylresorcinols in rye (Secale cereale) and some rye products. Journal of Cereal Science, 2018, 79:183-192.
doi: 10.1016/j.jcs.2017.09.009
[48] Rabinovich S V. Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L.. Euphytica, 1998, 100:323-340.
doi: 10.1023/A:1018361819215
[49] Khoo H E, Azlan A, Tang S T, et al. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutrition Research, 2017, 61(1):1361779.
doi: 10.1080/16546628.2017.1361779
[50] Cabrita L, Torgils F, Andersen Ø M. Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chemistry, 2000, 68(1):101-107.
doi: 10.1016/S0308-8146(99)00170-3
[51] Fukada T S, Inagaki Y, Yamaguchi T, et al. Colour-enhancing protein in blue petals. Nature, 2000, 407(6804):581.
[52] Tanaka Y, Ohmiya A. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Current Opinion in Biotechnology, 2008, 19(2):190-197.
doi: 10.1016/j.copbio.2008.02.015 pmid: 18406131
[53] 王华, 李茂福, 杨媛, 等. 果实花青素生物合成分子机制研究进展. 植物生理学报, 2015, 51(1):29-43.
[54] Garg M, Chawla M, Chunduri V, et al. Transfer of grain colors to elite wheat cultivars and their characterization. Journal of Cereal Science, 2016, 71:138-144.
doi: 10.1016/j.jcs.2016.08.004
[55] Abdel A, Ei S M, Hucl P, et al. Compositional differences in anthocyanins from blue- and purple-grained spring wheat grown in four environments in Central Saskatchewan. Cereal Chemistry, 2016, 93(1):32-38.
doi: 10.1094/CCHEM-03-15-0058-R
[56] Trojan V, Musilová M, V yhnánek T, et al. Chalcone synthase expression and pigment deposition in wheat with purple and blue colored caryopsis. Journal of Cereal Science, 2014, 59(1):48-55.
doi: 10.1016/j.jcs.2013.10.008
[57] Mullick D B, Faris D G, Brink V C, et al. Anthocyanins and anthocyanidins of the barley pericarp and aleurone tissue. Canadian Journal of Plant Science, 1958, 38(4):445-456.
doi: 10.4141/cjps58-071
[58] Knievel D C, Abdel-Aal E S M, Rabalski I, et al. Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). Journal of Cereal Science, 2009, 50(1):113-120.
doi: 10.1016/j.jcs.2009.03.007
[59] Hurd E A. Inheritance of blue kernel colour in wheat. Canadian Journal of Plant Science, 1959, 39(1):1-8.
doi: 10.4141/cjps59-001
[60] 李振声, 穆素梅, 蒋立训, 等. 蓝粒单体小麦研究(一). 遗传学报, 1982(6):431- 439,505-506.
[61] Zheng Q, Li B, Mu S M, et al. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome, 2006, 49(9):1109-1114.
doi: 10.1139/g06-073 pmid: 17110991
[62] Yu K, Liu D C, Wu W Y, et al. Development of an integrated linkage map of einkorn wheat and its application for QTL mapping and genome sequence anchoring. Theoretical and Applied Genetics, 2017, 130(1):53-70.
doi: 10.1007/s00122-016-2791-2 pmid: 27659843
[63] Singh K, Ghai M, Garg M, et al. An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum×T. monococcum RIL population. Theoretical and Applied Genetics, 2007, 115(3):301-312.
doi: 10.1007/s00122-007-0543-z
[64] Shen Y F, Shen J, Dawadondup, et al. Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum. Molecular Breeding, 2013, 31(1):195-204.
doi: 10.1007/s11032-012-9783-y
[65] Li J B, Lang T, Li B, et al. Introduction of Thinopyrum intermedium ssp. trichophorum chromosomes to wheat by trigeneric hybridization involving Triticum, Secale and Thinopyrum genera. Planta, 2017, 245(6):1121-1135.
doi: 10.1007/s00425-017-2669-9
[66] Liu X, Zhang M H, Jiang X M, et al. TbMYC4A is a candidate gene controlling the blue aleurone trait in a wheat-Triticum boeoticum substitution line. Frontiers in Plant Science, 2021, 12:762265.
doi: 10.3389/fpls.2021.762265
[67] 王青. 百萨偃麦草4J染色体长臂DNA序列分析及其蓝粒基因精细定位. 南京: 南京农业大学, 2020.
[68] 彭琴, 周军, 徐如宏, 等. 小麦种质GLM 1701蓝粒性状的遗传定位分析. 种子, 2020, 39(12):25-31.
[69] Diddugodage C J. 蓝粒小麦中花青素生物合成基因的基因定位及转录组分析. 杨凌: 西北农林科技大学, 2017.
[70] Voylokov A V, Lykholay A N, Smirnov V G. Genetic control of anthocyanin coloration in rye. Russian Journal of Genetics: Applied Research, 2015, 5:262-267.
[71] Xu D D, Dondup D, Dou T Y, et al. HvGST plays a key role in anthocyanin accumulation in colored barley. Plant Journal, 2022, 113(1):47-59.
doi: 10.1111/tpj.v113.1
[72] Zong Y, Li G M, Xi X Y, et al. A bHLH transcription factor TsMYC 2 is associated with the blue grain character in triticale (Triticum×Secale). Plant Cell Reports, 2019, 38(10):1291-1298.
doi: 10.1007/s00299-019-02449-3
[73] Zhao S, Xi X Y, Zong Y, et al. Overexpression of ThMYC4E enhances anthocyanin biosynthesis in common wheat. International Journal of Molecular Sciences, 2019, 21(1):137.
doi: 10.3390/ijms21010137
[74] Zhang S M, Sun F L, Zhang C Q, et al. Anthocyanin biosynthesis and a regulatory network of different-colored wheat grains revealed by multiomics analysis. Journal of Agricultural and Food Chemistry, 2022, 70(3):887-900.
doi: 10.1021/acs.jafc.1c05029 pmid: 35029408
[75] Castellarin S D, Di G G, Marconi R, et al. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation,expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin- based anthocyanins in berry skin. BMC Genomics, 2006, 7:12.
pmid: 16433923
[76] Li N, Li S M, Zhang K P, et al. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum. PLoS ONE, 2017, 12(7):e0181116.
doi: 10.1371/journal.pone.0181116
[77] Finch R A, Simpson E. New colours and complementary colour genes in barley. Zeitschrift Fuer Pflanzenzuechtung, 1978, 81 (1):40-53.
[78] Zhang G Q, Xue W H, Dai J, et al. Quantitative proteomics analysis reveals proteins and pathways associated with anthocyanin accumulation in barley. Food Chemistry, 2019, 298:124973.
doi: 10.1016/j.foodchem.2019.124973
[79] 裴嘉伟, 马力耕. 小麦籽粒蓝色基因及应用研究进展. 科学通报, 2022, 67(26):3110-3118.
[80] 苏乐平, 姚晓华, 吴昆仑, 等. 大麦(青稞)籽粒颜色相关研究进展. 江苏农业科学, 2019, 47(18):70-74.
[81] Yao X H, Wu K L, Yao Y H, et al. Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color (Psc) in hulless barley. Hereditas, 2018, 155:37.
doi: 10.1186/s41065-018-0072-6
[82] 丁艳慧. BSA·QTL-seq分离控制青稞蓝粒性状的可能性候选基因HvMYC1HvMYB1. 西宁: 青海师范大学, 2019.
[1] 孙通, 杨玉双, 马瑞琦, 朱英杰, 常旭虹, 董志强, 赵广才. 聚糠萘合剂和乙矮合剂对小麦抗倒伏能力、产量与品质的影响[J]. 作物杂志, 2024, (2): 113–121
[2] 徐哲莉, 朱伟旗, 王立涛, 史峰, 韦志英, 王丽娜, 邱红伟, 张晓英, 李辉利. 灌水及叶面施氮对晚播小麦产量、品质及光合特性的影响[J]. 作物杂志, 2024, (2): 139–147
[3] 杨恩泽, 谢锐, 韩平安, 张永虎, 刘锦川, 牛素清, 温蕊, 王春勇, 金晓蕾. 内蒙古162份苦荞资源表型性状的遗传多样性及综合评价[J]. 作物杂志, 2024, (2): 15–22
[4] 陈林, 姚晓华, 姚有华, 白羿雄, 吴昆仑. 青藏高原青稞品种籽粒外观和品质性状的多样性分析[J]. 作物杂志, 2024, (2): 213–220
[5] 季平, 刘金龙, 柳浩, 匡佳丽, 叶世河, 龙莎, 杨洪涛, 彭勃, 徐晨, 刘晓龙. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J]. 作物杂志, 2024, (1): 117–125
[6] 周镇磊, 刘建明, 曹东, 刘宝龙, 王东霞, 张怀刚. 不同燕麦品种草产量、农艺性状和饲草品质的比较[J]. 作物杂志, 2024, (1): 132–140
[7] 刘哲文, 郭丹丹, 常旭虹, 王德梅, 杨玉双, 刘希伟, 王玉娇, 石书兵, 王艳杰, 赵广才. 氮肥追施时期和比例对强筋小麦籽粒灌浆及其生理机制的影响[J]. 作物杂志, 2024, (1): 174–179
[8] 郝小聪, 李欣宇, 侯起岭, 杨吉芳, 安春会, 王长华, 叶志杰, 张风廷. 施氮量对二系杂交小麦品质的影响[J]. 作物杂志, 2024, (1): 187–192
[9] 张璐, 李登明, 翟晓宇, 武俊英, 高世华, 赵宇飞. 燕麦刈割期农艺与品质性状差异及其与再生性能的关系[J]. 作物杂志, 2024, (1): 220–228
[10] 刘丹, 王嘉宇, 冯章丽, 冯博, 陈温福. 辽宁省粳稻品种的遗传多样性与群体结构分析[J]. 作物杂志, 2024, (1): 40–47
[11] 孙远涛, 龙文靖, 李元, 刘天朋, 赵甘霖, 丁国祥, 倪先林. 45份糯高粱种质资源主要农艺性状和SSR标记的遗传多样性分析[J]. 作物杂志, 2024, (1): 57–64
[12] 王月影, 范保杰, 曹志敏, 王彦, 苏秋竹, 张志肖, 王珅, 时会影, 沈颖超, 程须珍, 刘长友, 田静. 利用EST-SSR标记分析绿豆农家种及育成品种的遗传多样性[J]. 作物杂志, 2024, (1): 73–79
[13] 郝智勇, 杨广东, 胡尊艳, 李菁华, 孙邦升, 陈林祺. 不同肥料对极早熟高粱产量、农艺性状及品质的影响[J]. 作物杂志, 2023, (6): 218–223
[14] 赵丽洁, 赵海燕, 韩根兰, 王江, 聂萌恩, 杜慧玲, 原向阳, 董淑琦. 氮肥配施有机肥对谷子品质的影响[J]. 作物杂志, 2023, (6): 224–232
[15] 赵锋, 包奇军, 潘永东, 柳小宁, 张华瑜, 牛小霞. 70份大麦种质资源遗传多样性评价[J]. 作物杂志, 2023, (6): 54–61
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!