作物杂志,2024, 第4期: 172–179 doi: 10.16035/j.issn.1001-7283.2024.04.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

抗旱糜子根系生长特性及叶片表皮结构对水分胁迫的响应

冯晓敏1(), 高翔1, 吕慧卿1, 郝志萍1, 张力1, 周忠宇1, 张永清2()   

  1. 1山西农业大学高粱研究所,030600,山西榆次
    2山西师范大学生命科学学院,030031,山西太原
  • 收稿日期:2024-02-07 修回日期:2024-04-09 出版日期:2024-08-15 发布日期:2024-08-14
  • 通讯作者: 张永清,主要从事植物生理生态、植物营养及土壤学研究,E-mail:yqzhang208@126.com
  • 作者简介:冯晓敏,主要从事作物种植制度与土壤生态研究,E-mail:fengxiaomin.1986@163.com
  • 基金资助:
    山西省博士来晋工作科研项目(SXBYKY2022069);山西农业大学博士人才引进科研启动项目(2022BQ03);山西农业大学高粱研究所高粱遗传与种质创新山西省重点实验室国家基金培育项目(Gls-gp-202301);杂粮种质资源创新与分子育种国家(筹)课题(202204010910001-30);山西省高等学校科技创新项目(2023L039)

The Responses of Root Growth Characteristics and Leaf Epidermal Structure of Drought-Resistant Broomcorn Millet to Water Stress

Feng Xiaomin1(), Gao Xiang1, Lü Huiqing1, Hao Zhiping1, Zhang Li1, Zhou Zhongyu1, Zhang Yongqing2()   

  1. 1Institute of Sorghum Research, Shanxi Agricultural University, Yuci 030600, Shanxi, China
    2School of Life Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China
  • Received:2024-02-07 Revised:2024-04-09 Online:2024-08-15 Published:2024-08-14

摘要:

以2个抗旱性不同的糜子品种陇糜4号和晋黍7号为材料,采用全生育期防雨棚盆栽方式,设置正常供水(CK,土壤含水量为田间持水量的65%~75%)、轻度水分胁迫(55%~65%)、中度水分胁迫(45%~55%)和重度水分胁迫(35%~45%)4个处理,观察不同抗旱性糜子品种叶片显微结构,比较整个生育期水分胁迫对不同抗旱性糜子品种根长、根总表面积、根冠比和根系活力的差异。结果表明,轻度水分胁迫处理提高了2个糜子品种的根长、根总表面积、根冠比和根系活力;重度水分胁迫下,根长、根表面积、根冠比及根系活力均随着水分胁迫程度的加剧而减小,且显著降低了糜子的根冠比和根系活力,陇糜4号和晋黍7号成熟期2年的根冠比分别平均降低11.90%和24.38%,根系活力分别平均降低18.73%和58.11%,且对水分敏感的晋黍7号的根系活力受抑制程度显著大于陇糜4号。通过扫描电镜研究发现,相同倍数下,抗旱性强的品种气孔密而多,且上表面分布有较多的长细胞、较密集的蜡质,同时有硅质细胞的存在。抗旱性品种陇糜4号在重度水分胁迫下各指标降幅均低于晋黍7号,良好的根系形态、较强的根系活力及硅质细胞的存在是其能较好适应干旱环境的主要因素。

关键词: 糜子, 水分胁迫, 根系特征, 叶片结构

Abstract:

Longmi 4 and Jinshu 7 were used as materials and anti-canopy was used throughout the growth period. Four different water stress treatments were carried out including normal water supply (CK, the soil water content is 65%-75% of the field water holding capacity), mild water stress (55%-65%), moderate water control (45%-55%) and severe stress (35%-45%) of whole broomcorn millet growth stage, the leaf microstructure of different drought-resistant broomcorn millet varieties was observed, root length, total root surface area, root- shoot ratio, root activity of different drought-resistant millet varieties were compared under whole growth period. The results showed that root length, total root surface area, root-shoot ratio and root activity of two millet varieties were increased under mild water stress. However, root length, root surface area, root-shoot ratio and root activity were decreased as the water stress increasing, and the root-shoot ratio and root activity of broomcorn millet significantly reduced under severe water stress. The root-shoot ratio of Longmi 4 and Jinshu 7 were decreased by 11.90% and 24.38%, respectively, the root activities were decreased by 18.73% and 58.11% on average in maturity period under severe water stress, and the degree of root activity inhibition of Jinshu 7 was significantly greater than that of Longmi 4. In the same multiple, by scanning electron microscopy, the varieties with strong drought resistance had dense stomata, long cells, dense waxy, and had siliceous cells on the upper surface at the same ratio by stem observation method. In short, all indexes of Longmi 4 had a lower decrease under severe water stress than Jinshu 7 because it had good root morphology, strong root vitality and siliceous cells for adapting to drought environment.

Key words: Broomcorn millet, Water stress, Root characteristics, Leaf structure

表1

水分胁迫对糜子产量及其构成的影响

品种
Variety
处理
Treatment
2018 2019
株高
Plant height
(cm)
单株穗重
Ear weight
per plant (g)
千粒重
1000-grain
weight (g)
产量(g/盆)
Yield
(g/pot)
株高
Plant height
(cm)
单株穗重
Ear weight
per plant (g)
千粒重
1000-grain
weight (g)
产量(g/盆)
Yield
(g/pot)
陇糜4号
Longmi 4
CK 157.6±4.34a 11.16±0.12a 7.31±0.11a 239.46±9.90a 142.3±5.24a 11.05±0.09a 7.24±0.07a 235.13±6.72a
LS 163.1±5.53a 11.81±0.11a 7.52±0.09a 251.24±9.52a 156.4±6.41a 11.22±0.12a 7.46±0.06a 238.65±8.93a
MS 144.9±3.21b 10.86±0.09b 7.24±0.08a 211.81±8.33b 135.1±4.33b 10.68±0.10a 7.19±0.06a 217.32±6.15a
SS 122.7±3.44c 8.53±0.07b 6.51±0.09b 204.97±7.35b 110.8±3.21c 8.32±0.06b 6.08±0.08b 195.87±5.28b
晋黍7号
Jinshu 7
CK 148.3±4.23a 9.12±0.13a 6.87±0.15a 196.10±6.82a 130.4±5.11b 9.10±0.07a 6.78±0.09a 195.46±6.79a
LS 151.4±4.11a 9.41±0.14a 7.14±0.18a 205.93±7.25a 143.8±4.14a 9.35±0.13a 7.10±0.06a 200.78±7.85a
MS 132.6±3.34b 8.35±0.10b 6.11±0.08b 164.24±8.31b 122.6±3.61b 7.87±0.11b 5.64±0.07b 160.43±5.66b
SS 117.8±3.22c 7.63±0.12b 5.12±0.12c 140.35±5.56c 115.3±2.09c 6.56±0.09c 5.03±0.10b 142.91±4.97c

图1

水分胁迫对不同生育期糜子根系根冠比的影响 不同小写字母表示差异显著(P < 0.05),下同。

表2

水分胁迫下糜子不同生育时期总根长(2018)

品种Variety 处理Treatment 苗期Seedling stage 拔节期Jointing stage 抽穗期Heading stage 成熟期Maturity
陇糜4号Longmi 4 CK 346.31±3.77a 805.73±31.24a 2208.86±50.16a 2335.49±108.96b
LS 354.36±5.69a 839.54±26.53a 2238.27±66.89a 2449.37±112.53a
MS 338.25±4.05ab 778.67±23.66b 1894.27±110.59b 2259.49±78.99b
SS 314.83±3.28b 731.76±34.56b 1723.16±42.53b 2221.52±85.10b
晋黍7号Jinshu 7 CK 277.46±4.53a 694.62±25.77a 1632.35±56.42a 1803.80±77.53a
LS 298.41±5.67a 721.70±38.56a 1692.35±48.79a 1879.75±85.62a
MS 190.64±3.56b 640.92±18.97b 1300.04±60.03b 1689.87±56.89b
SS 153.02±3.10b 617.18±28.11b 1213.09±40.05b 1551.90±52.22b

表3

水分胁迫下糜子不同生育时期总根长(2019)

品种Variety 处理Treatment 苗期Seedling stage 拔节期Jointing stage 抽穗期Heading stage 成熟期Maturity
陇糜4号Longmi 4 CK 335.47±3.01a 795.70±15.63a 2083.65±69.10a 2325.46±88.56a
LS 346.26±4.53a 805.23±24.33a 2110.01±54.46a 2398.51±96.13a
MS 325.59±2.88b 768.45±18.90b 1763.88±72.28b 2198.50±79.62b
SS 315.38±1.35b 726.57±20.19b 1715.86±61.30b 2140.23±65.99c
晋黍7号Jinshu 7 CK 265.41±3.58a 685.44±24.15a 1610.25±18.79a 1779.68±39.22a
LS 271.52±3.54a 715.69±35.88a 1643.53±28.97a 1785.52±51.29a
MS 188.50±5.14b 625.12±28.97b 1285.32±50.69b 1635.45±40.75b
SS 150.47±4.39b 606.55±17.11b 1161.00±23.49b 1567.65±72.28c

表4

水分胁迫下糜子不同生育时期的根总表面积(2018)

品种Variety 处理Treatment 苗期Seedling stage 拔节期Jointing stage 抽穗期Heading stage 成熟期Maturity
陇糜4号Longmi 4 CK 346.31±3.77a 805.73±31.24a 2208.86±50.16a 2335.49±108.96b
LS 354.36±5.69a 839.54±26.53a 2238.27±66.89a 2449.37±112.53a
MS 338.25±4.05ab 778.67±23.66b 1894.27±110.59b 2259.49±78.99b
SS 314.83±3.28b 731.76±34.56b 1723.16±42.53b 2221.52±85.10b
晋黍7号Jinshu 7 CK 277.46±4.53a 694.62±25.77a 1632.35±56.42a 1803.80±77.53a
LS 298.41±5.67a 721.70±38.56a 1692.35±48.79a 1879.75±85.62a
MS 190.64±3.56b 640.92±18.97b 1300.04±60.03b 1689.87±56.89b
SS 153.02±3.10b 617.18±28.11b 1213.09±40.05b 1551.90±52.22b

表5

水分胁迫下糜子不同生育时期的根总表面积(2019)

品种Variety 处理Treatment 苗期Seedling stage 拔节期Jointing stage 抽穗期Heading stage 成熟期Maturity
陇糜4号Longmi 4 CK 335.47±3.01a 795.70±15.63a 2083.65±69.10a 2325.46±88.56a
LS 346.26±4.53a 805.23±24.33a 2110.01±54.46a 2398.51±96.13a
MS 325.59±2.88b 768.45±18.90b 1763.88±72.28b 2198.50±79.62b
SS 315.38±1.35b 726.57±20.19b 1715.86±61.30b 2140.23±65.99c
晋黍7号Jinshu 7 CK 265.41±3.58a 685.44±24.15a 1610.25±18.79a 1779.68±39.22a
LS 271.52±3.54a 715.69±35.88a 1643.53±28.97a 1785.52±51.29a
MS 188.50±5.14b 625.12±28.97b 1285.32±50.69b 1635.45±40.75b
SS 150.47±4.39b 606.55±17.11b 1161.00±23.49b 1567.65±72.28c

图2

水分胁迫对不同生育期糜子根系活力的影响

图3

糜子品种根系各指标之间的相关性分析

图4

成熟期糜子叶片表皮结构特征 (a) 陇糜4号上表皮;(b) 晋黍7号上表皮;(c) 陇糜4号上表皮气孔;(d) 晋黍7号上表皮气孔;(e) 陇糜4号下表皮气孔;(f) 晋黍7号下表皮气孔;(g) 陇糜4号长细胞;(h) 陇糜4号硅质细胞。

[1] 邢媛, 贾馥翠, 陈凌, 等. 模拟干旱胁迫下黍稷资源抗旱性评价. 山西农业科学, 2022, 50(7):965-972.
[2] 王荣荣, 王海琪, 蒋桂英, 等. 2个不同抗旱性小麦品种耗水特征及根系生理特性对开花期干旱的响应. 水土保持学报, 2022, 36(4):253-264.
[3] 沈业杰, 尹光华, 佟娜, 等. 玉米抗旱相关生理生化指标研究及品种筛选. 干旱区资源与环境, 2012, 26(4):176-180.
[4] 魏曼娜. 干旱胁迫下不同大豆品种根系性状和光合生理研究. 沈阳: 沈阳农业大学, 2016.
[5] 王涛. 覆膜处理对糜子农田土壤水温变化及生长发育的影响. 阿拉尔: 塔里木大学, 2022.
[6] 王倩, 张立媛, 许月, 等. 黍稷高基元EST-SSR标记开发及200份核心种质资源遗传多样性分析. 作物学报, 2023, 49(8):2308-2318.
doi: 10.3724/SP.J.1006.2023.24201
[7] 王倩, 董孔军, 薛亚鹏, 等. 糜子核心种质成株期抗旱性鉴定评价与抗旱种质筛选. 中国农业科学, 2023, 56(21):4163-4174.
doi: 10.3864/j.issn.0578-1752.2023.21.003
[8] 杨清华, 王洪露, 冯佰利. 糜子品质研究进展与展望. 植物学报, 2023, 58(1):22-33.
doi: 10.11983/CBB22180
[9] 李芮, 刘晓宇, 刘乐, 等. 糜子叶片表皮蜡质的组分及晶体结构分析. 干旱地区农业研究, 2020, 38(6):7-12.
[10] 朱天琦, 刘晓静, 张晓玲. 氮营养调控对紫花苜蓿根系形态及其解剖结构的影响. 草地学报, 2016, 24(6):1290-1295.
doi: 10.11733/j.issn.1007-0435.2016.06.020
[11] 张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社, 1990.
[12] 杨秉耀, 陈新芳, 刘向东, 等. 水稻不同品种叶表面硅质细胞的扫描电镜观察. 电子显微学报, 2006, 25(2):146-150.
[13] Zhuo W, Fang S B, Wu D, et al. Integrating remotely sensed water stress factor with a crop growth model for winter wheat yield estimation in the North China Plain during 2008-2018. The Crop Journal, 2022, 10(5):1470-1482.
[14] 傅晓艺, 王红光, 刘志连, 等. 水分胁迫对不同小麦幼苗期生长的影响及抗旱品种筛选. 作物杂志, 2023(4):224-229.
[15] Fageria N K. Influence of dry matter and length of roots on growth of five field crops at varying soil zinc and copper levels. Journal of Plant Nutrition, 2005, 27(9):1517-1523.
[16] 庄晔, 葛嘉雪, 汪孝国, 等. 干旱胁迫及复水对烤烟生长及其生理特性的影响. 中国烟草学报, 2022, 28(4):48-58.
[17] 刘巧玲, 李王成, 贾振江, 等. 干旱胁迫下植物根系适应性机制研究进展与热点分析. 江苏农业科学, 2023, 51(9):34-40.
[18] 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018, 51(5):868-882.
doi: 10.3864/j.issn.0578-1752.2018.05.006
[19] Li Q Q, Dong B D, Qiao Y Z, et al. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agriculture Water Manage, 2011, 97(10):1676-1682.
[20] 赵阳, 王树声, 张亚丽, 等. 增加烟草一级和二级侧根是抵御干旱的生理机制. 植物营养与肥料学报, 2017, 23(2):548-555.
[21] 丁国华, 白良明, 曹良子, 等. 干旱胁迫对寒地水稻不同种质资源萌发特性及幼苗生长的影响. 种子, 2020, 39(11):38-43.
[22] 姬文琴, 杨智, 汪辉, 等. 不同生育阶段燕麦对干旱胁迫的响应. 中国草地学报, 2021, 43(1):58-67.
[23] 修俊杰, 刘学良. 水氮互作对花针期花生生理特性及生长的影响. 作物杂志, 2023(6):174-180.
[24] 时晴晴, 李炎, 王仰仁. 玉米器官生长相关性对水分胁迫的影响. 节水灌溉, 2023(10):11-17.
doi: 10.12396/jsgg.2022271
[25] 王荣荣, 王海琪, 蒋桂英, 等. 2个不同抗旱性小麦品种耗水特征及根系生理特性对开花期干旱的响应. 水土保持学报, 2022, 36(4):253-264.
[26] Rejeth R, Manikanta C L, Beena R, et al. Water stress mediated root trait dynamics and identification of microsatellite markers associated with root traits in rice (Oryza sativa L). Physiology and Molecular Biology of Plants, 2020, 26(1):1225-1236.
[27] 李帅, 赵国靖, 徐伟洲, 等. 白羊草根系形态特征对土壤水分阶段变化的响应. 草业学报, 2016, 25(2):169-177.
doi: 10.11686/cyxb2015171
[28] Shan Z Y, Jiang Y M, Li H Q, et al. Genome-wide analysis of the NAC transcription factor family in broomcorn millet (Panicum miliaceum L.) and expression analysis under drought stress. BMC Genomics, 2020, 21(1):96.
[29] 张帆, 白羽, 王嘉欢, 等. 黑芝麻叶片表皮蜡质成分及含量研究. 西北农业学报, 2015, 24(11):107-112.
[30] Kim K S, Park S H, Jenks M A. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.). Journal of Plant Physiology, 2007, 164(9):1134.
[31] 张盼盼, 慕芳, 宋慧, 等. 糜子叶片解剖结构与其抗旱性关联研究. 农业机械学报, 2013, 44(5):119-124.
[32] Xu Z Q, Ma J J, Lei P, et al. Poly-γ-glutamic acid induces system tolerance to drought stress by promoting abscisic acid accumulation in Brassica napus L. Scientific Reports, 2020, 10(1):252.
[33] Barnard R L, Osborne C A, Firestone M K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 2013, 7(11):2229-2241.
[34] Yuan Y H, Liu L, Gao Y B, et al. Comparative analysis of drought-responsive physiological and transcriptome in broomcorn millet (Panicum miliaceum L.) genotypes with contrasting drought tolerance. Industrial Crop and Products, 2022, 177:114498.
[1] 张磊, 董孔军, 何继红, 任瑞玉, 刘天鹏, 杨天育. 不同基因型糜子品种氮磷养分吸收差异研究[J]. 作物杂志, 2024, (2): 228–233
[2] 周旭, 何晓蕾, 曹亮, 李多, 傅晨野, 张明聪, 张玉先, 王孟雪. 苗期不同程度水分胁迫及复水处理对大豆抗氧化特性及产量的影响[J]. 作物杂志, 2023, (6): 135–142
[3] 张尚沛, 杨军学, 罗世武, 王勇, 张晓娟, 程炳文. 糜子育成品种(系)农艺性状遗传变异与丰产性分析[J]. 作物杂志, 2023, (5): 37–42
[4] 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 马铃薯生长及生理特性对水分胁迫的响应研究综述[J]. 作物杂志, 2023, (4): 16–21
[5] 傅晓艺, 王红光, 刘志连, 李东晓, 何明琦, 李瑞奇. 水分胁迫对不同小麦幼苗期生长的影响及抗旱品种筛选[J]. 作物杂志, 2023, (4): 224–229
[6] 郭英杰, 刘洋, 刘晓婕, 魏玮, 王瑶, 张帅, 王振山, 闫留延, 朱学海, 贾小平. 糜子矮秆突变体海5农艺性状及对GA3的敏感性鉴定[J]. 作物杂志, 2023, (3): 80–85
[7] 董扬. 糜子对不同除草剂的生理响应机制研究[J]. 作物杂志, 2022, (5): 255–260
[8] 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展[J]. 作物杂志, 2022, (1): 11–19
[9] 闫锋. 喷施多效唑对糜子生长及光合特性的影响[J]. 作物杂志, 2022, (1): 179–183
[10] 张盼盼, 张洪鹏, 郭亚宁. 2种植物生长调节剂对糜子光合特性和产量的影响[J]. 作物杂志, 2021, (6): 159–163
[11] 梁海燕, 李海, 丁超, 杨芳, 宋晓强, 邓亚蕊, 刘贵山, 林凤仙, 张翔宇, 苏占明, 姜超. 钾肥对糜子茎秆形态、力学、生理特性及抗倒伏能力的影响[J]. 作物杂志, 2021, (6): 177–181
[12] 闫锋, 李清泉, 董扬, 季生栋, 韩业辉, 于运凯, 王立达, 赵锁. 60Co-γ辐射对糜子种子萌发及幼苗生长的影响[J]. 作物杂志, 2021, (4): 202–205
[13] 张晓娟, 张尚沛, 程炳文, 罗世武, 王勇, 杨军学, 王晓军. 旱地糜子生长、产量及土壤环境对不同覆膜种植方式的响应[J]. 作物杂志, 2021, (2): 124–129
[14] 王贺正,沈思涵,张冬霞,王改净,郑金枝,毕彪,王文杰. 水杨酸对水分胁迫下小麦幼苗生理生化特性的影响[J]. 作物杂志, 2020, (2): 168–171
[15] 杨军学,张尚沛,罗世武,王勇,张晓娟,王晓军,程炳文. 不同外源激素对糜子成穗及产量的影响[J]. 作物杂志, 2019, (6): 150–155
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!