作物杂志,2019, 第2期: 142–149 doi: 10.16035/j.issn.1001-7283.2019.02.022

所属专题: 其他作物

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

镉胁迫对烟草种子萌发和烟苗生长发育的影响

闫晶,姬文秀,石贤吉,朱诗苗,李虎林   

  1. 延边大学农学院,133002,吉林延吉
  • 收稿日期:2018-10-29 修回日期:2019-02-02 出版日期:2019-04-15 发布日期:2019-04-12
  • 通讯作者: 李虎林

Effects of Cadmium Stress on Seed Germination and Seedling Growth of Tobacco (Nicotiana tabacum)

Jing Yan,Wenxiu Ji,Xianji Shi,Shimiao Zhu,Hulin Li   

  1. College of Agronomy, Yanbian University, Yanji 133002, Jilin, China
  • Received:2018-10-29 Revised:2019-02-02 Online:2019-04-15 Published:2019-04-12
  • Contact: Hulin Li

摘要:

为探讨不同镉(Cd)胁迫对不同烟草品种种子萌发、幼苗生长的生理生态效应的影响,以吉烟9号、吉烟10号、延晒六号3个烟草品种为材料,研究了不同浓度的Cd溶液对烟草种子萌发以及烟苗生长发育的影响。结果表明,Cd胁迫下烟草种子发芽势、发芽率、发芽指数、活力指数、苗高均受到抑制;烟苗叶绿素含量降低,根冠比变小,生长受到抑制,CAT活性、SOD活性、可溶性糖含量随Cd浓度的增加呈先增后降的趋势,POD活性、MDA含量、Pro含量、Cd含量均随Cd浓度的增加而增加。可见Cd胁迫能不同程度地影响烟草种子萌发和烟苗生长发育,烟苗体内的抗氧化酶系统被破坏,多种酶活性不协调,生理生化过程紊乱,最终导致烟苗受害。

关键词: 镉胁迫, 烟草, 种子萌发, 幼苗生长, 生理生化指标

Abstract:

The purpose of this study was to investigate the effects of different concentrations of cadmium (Cd) on seed germination and physiological and ecological effects of seedling growth of different tobacco varieties. Three tobacco varieties (Ji 9, Ji 10, Shai 6) were used as test materials to study the effects of different concentrations of Cd on seed germination and seedlings growth of tobacco. Under Cd stress, the seeds germination potential, germination rate, germination index, vigor index and seedling height of tobacco were all inhibited; the chloropohyll content and the ratio of root to shoot of tobacco seedlings was reduced, the growth was inhibited. CAT activity, SOD activity, the content of soluble sugar increased first and then decreased with the increase of Cd concentration. POD activity, MDA content, free proline content increased with the increase of Cd concentration. In other words, under Cd stress, seed germination and seedling growth could be affected to some extent, the antioxidant enzymes in the seedlings were destroyed, enzyme activity was uncoordinated, and the physiological processes were disturbed, leading to tobacco seedling damage.

Key words: Cadmium stress, Nicotiana tabacum, Seed germination, Seedling growth, Physiological and biochemical index

表1

Cd对烟草种子发芽势的影响"

Cd浓度(mg/L)
Cd concentration
吉9 Ji 9 吉10 Ji 10 晒六Shai 6
0 95.3±0.6b 89.0±1.0b 85.3±0.6b
2 96.7±0.6a 91.3±0.6a 87.7±0.6a
5 94.0±1.0c 87.0±1.0c 82.3±1.2c
10 90.3±0.6d 84.7±0.6d 78.0±1.0c

表2

Cd对烟草种子发芽率的影响"

Cd浓度(mg/L)
Cd concentration
吉9 Ji 9 吉10 Ji 10 晒六Shai 6
0 95.3±0.6ab 90.3±0.6a 86.3±1.5a
2 96.3±0.6a 91.3±0.6a 88.0±1.0a
5 94.0±1.0b 87.3±0.6b 83.0±1.0b
10 91.0±1.0c 85.3±1.5c 79.0±1.0c

表3

Cd对烟草种子发芽指数的影响"

Cd浓度(mg/L)
Cd concentration
吉9 Ji 9 吉10 Ji 10 晒六Shai 6
0 1.65±0.01b 1.41±0.01b 1.32±0.01b
2 1.68±0.01a 1.46±0.01a 1.38±0.01a
5 1.58±0.01c 1.36±0.01c 1.18±0.01c
10 1.43±0.01d 1.25±0.01d 1.05±0.01d

表4

Cd对烟草种子活力指数的影响"

Cd浓度(mg/L)
Cd concentration
吉9 Ji 9 吉10 Ji 10 晒六Shai 6
0 2.22±0.04a 1.84±0.02a 1.41±0.02b
2 1.95±0.02b 1.70±0.01b 1.44±0.02a
5 1.31±0.08c 1.23±0.03c 0.86±0.01c
10 0.99±0.03d 1.08±0.03d 0.67±0.03d

表5

Cd对烟草幼芽毒害死亡率的影响"

Cd浓度(mg/L)
Cd concentration
吉9 Ji9 吉10 Ji10 晒六Shai6
0 3.3±1.2a 1.0±0.0a 1.0±1.0a
2 6.7±0.6a 2.0±0.0a 2.0±1.0a
5 30.0±3.0b 21.3±2.3b 25.3±1.5b
10 54.7±1.5c 34.0±2.0c 52.3±2.1c

表6

Cd对烟草幼芽长度的影响"

Cd浓度(mg/L)
Cd concentration
吉9 Ji9 吉10 Ji10 晒六Shai6
0 1.27±0.02a 1.29±0.01a 1.07±0.02a
2 1.23±0.01a 1.26±0.01a 1.04±0.01a
5 0.83±0.05b 0.90±0.02b 0.73±0.01b
10 0.69±0.02c 0.73±0.02c 0.58±0.03c

表7

Cd对烟苗农艺性状的影响"

品种
Variety
Cd浓度
(mg/kg)
Cd concentration
株高(cm)
Plant
height
茎粗(cm)
Stem
girth
叶片数
Leaf
number
根长(cm)
Root
length
最大叶长(cm)
Maximum
leaf length
最大叶宽(cm)
Maximum
leaf width
吉9 Ji9 0 26.1±1.3a 0.60±0.01a 7.0±0.0a 5.37±0.12a 21.8±0.8a 10.72±0.23a
2 24.5±2.2ab 0.55±0.04b 7.0±0.0a 5.67±1.04a 20.2±0.3ab 9.87±0.21a
5 24.4±0.5ab 0.51±0.01b 6.3±0.6a 4.17±0.32b 19.6±0.3b 8.17±0.31b
10 21.4±2.3b 0.43±0.03c 5.3±0.6b 3.93±0.12b 15.5±1.0c 7.07±0.96c
吉10 Ji10 0 22.7±0.5a 0.60±0.03a 7.0±0.0a 8.00±0.44a 16.1±1.0a 9.77±0.29a
2 20.1±0.7b 0.50±0.03b 7.0±0.0a 7.43±0.81a 13.2±0.3b 9.07±0.40a
5 19.2±0.8b 0.46±0.02b 6.3±0.6b 5.30±0.10b 12.7±0.3b 8.47±0.45a
10 14.4±1.9c 0.41±0.09b 6.0±0.0b 4.53±0.25b 11.0±0.5c 5.87±1.55b
晒六Shai6 0 16.4±1.0a 0.43±0.04a 5.0±0.0a 6.63±0.32a 12.5±0.5a 6.37±0.23a
2 13.6±0.1b 0.41±0.01ab 5.0±0.0a 5.83±0.15b 11.1±0.3b 5.77±0.15b
5 13.3±0.1b 0.40±0.00ab 4.7±0.6a 4.93±0.12c 10.3±0.5c 5.43±0.32b
10 11.7±0.4c 0.38±0.01b 4.3±0.6a 4.37±0.21d 10.1±0.2c 5.00±0.00c

表8

Cd对烟苗生物量的影响"

品种
Variety
Cd浓度
(mg/kg)
Cd concentration
叶绿素含量
Chlorophyll content
(SPAD)
地上部(g/5株)
Above ground (g/5 plants)
地下部(g/5株)
Under ground (g/5 plants)
根冠比
Root-shoot ratio
鲜重
Fresh weight
干重
Dry weight
鲜重
Fresh weight
干重
Dry weight
鲜重比
Fresh weight ratio
干重比
Dry weight ratio
吉9 Ji9 0 24.0±0.1b 44.8±0.2a 3.31±0.08a 2.75±0.07b 0.31±0.01a 0.062±0.001b 0.095±0.002a
2 24.8±0.2a 44.3±0.1b 3.45±0.08a 3.06±0.04a 0.26±0.02b 0.069±0.001a 0.076±0.003b
5 21.9±0.2c 40.5±0.2c 2.57±0.17b 2.29±0.08c 0.19±0.01c 0.057±0.002c 0.076±0.003b
10 19.8±0.6d 28.2±0.1d 1.74±0.13c 1.52±0.04d 0.13±0.01d 0.054±0.001d 0.073±0.002b
吉10 Ji10 0 27.3±0.4ab 42.2±0.9a 2.91±0.07a 3.23±0.02a 0.40±0.03a 0.077±0.002a 0.138±0.013a
2 29.2±1.7a 33.6±1.2b 2.52±0.02b 2.61±0.02b 0.32±0.02b 0.078±0.003a 0.127±0.009a
5 25.4±1.1b 29.7±0.2c 2.33±0.02c 2.16±0.02c 0.25±0.02c 0.073±0.001b 0.107±0.010b
10 21.7±0.6c 26.9±0.4d 1.83±0.04d 1.86±0.02d 0.19±0.01d 0.069±0.001c 0.104±0.004b
晒六Shai6 0 27.7±0.3b 16.5±0.4a 1.30±0.02a 3.33±0.11a 0.32±0.02a 0.202±0.011a 0.246±0.017a
2 32.9±0.8a 15.8±0.2b 1.33±0.01a 2.25±0.12b 0.23±0.02b 0.143±0.006b 0.171±0.013b
5 26.4±0.4c 15.4±0.1b 1.18±0.02b 1.41±0.05c 0.16±0.01c 0.092±0.004c 0.136±0.008c
10 23.6±0.9d 12.4±0.6c 1.05±0.04c 1.05±0.03d 0.12±0.01d 0.085±0.002c 0.118±0.002c

图1

Cd对烟草幼苗CAT活性的影响"

图2

Cd对烟草幼苗SOD活性的影响"

图3

Cd对烟草幼苗POD活性的影响"

图4

Cd对烟草幼苗MDA含量的影响"

图5

Cd对烟草幼苗可溶性糖含量的影响"

图6

Cd对烟草幼苗Pro含量的影响"

图7

不同烟草品种对Cd的吸收"

[1] Hu Y F, Zhou G, Na X F , et al. Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. Journal of Plant Physiology, 2013,170(11):965-975.
doi: 10.1016/j.jplph.2013.02.008 pmid: 23683587
[2] Kostrubiak D E, Vacchisuzzi C, Smith D M , et al. Blood cadmium and depressive symptoms:Confounded by cigarette smoking. Psychiatry Research, 2017,256:444-447.
doi: 10.1016/j.psychres.2017.07.019 pmid: 28709058
[3] Uraguchi S, Mori S, Kuramata M , et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 2009,60(9):2677-2688.
doi: 10.1093/jxb/erp119 pmid: 2692013
[4] He J Y, Ren Y F, Wang F J , et al. Characterization of cadmium uptake and translocation in a cadmium-sensitive mutant of rice (Oryza sativa L. ssp. japonica). Archives of Environmental Contamination and Toxicology, 2009,57(2):299-306.
doi: 10.1007/s00244-008-9273-8 pmid: 19112560
[5] Hafsi C, Romero-Puertas M C,Gupta D K ,et al. Moderate salinity enhances the antioxidative response in the halophyte Hordeum maritimum L. under potassium deficiency. Environmental & Experimental Botany, 2010,69(2):129-136.
doi: 10.1016/j.envexpbot.2010.04.008
[6] Nouairi I, Ammar W B, Youssef N B , et al. Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiologiae Plantarum, 2009,31(2):237-247.
doi: 10.1007/s11738-008-0224-9
[7] Kranner I, Colville L . Metals and seeds:Biochemical and molecular implications and their significance for seed germination. Environmental & Experimental Botany, 2011,72(1):93-105.
doi: 10.1016/j.envexpbot.2010.05.005
[8] De T M C, Arrigoni O . The ascorbic acid system in seeds:to protect and to serve. Seed Science Research, 2003,13(4):249-260.
doi: 10.1079/SSR2003143
[9] Gill S S, Tuteja N . Cadmium stress tolerance in crop plants:probing the role of sulfur. Plant Signaling & Behavior, 2011,6(2):215-222.
doi: 10.4161/psb.6.2.14880 pmid: 3121981
[10] Rahoui S, Chaoui A, Ferjani E E . Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.). Acta Physiologiae Plantarum, 2008,30(4):451-456.
doi: 10.1007/s11738-008-0142-x
[11] Islam M M, Hoque M A, Okuma E , et al. Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 2009,166(15):1587-1597.
doi: 10.1016/j.jplph.2009.04.002 pmid: 19423184
[12] 高阳, 娄虹, 李淑媛 , 等. 镉胁迫对烟草愈伤组织抗氧化系统的影响. 生态学杂志, 2014,33(5):1217-1223.
[13] Toppi L S D, Gabbrielli R . Response to cadmium in higher plants. Environmental & Experimental Botany, 1999,41(2):105-130.
doi: 10.1016/S0098-8472(98)00058-6
[14] Munzuroglu O, Geckil H . Effects of metals on seed germination,root elongation,and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives of Environmental Contamination and Toxicology, 2002,43(2):203-213.
doi: 10.1007/s00244-002-1116-4 pmid: 12115046
[15] Sfaxi-Bousbih A, Chaoui A, Ferjani E E . Cadmium impairs mineral and carbohydrate mobilization during the germination of bean seeds. Ecotoxicology & Environmental Safety, 2010,73(6):1123-1129.
doi: 10.1016/j.ecoenv.2010.01.005 pmid: 20138361
[16] Li W, Khan M A, Yamaguchi S , et al. Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regulation, 2005,46(1):45-50.
doi: 10.1007/s10725-005-6324-2
[17] Mahmood T, Islam K R, Muhammad A S . Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pakistan Journal of Botany, 2007,39(2):451-462.
doi: 10.1094/MPMI-20-4-0459
[18] Chugh L K, Sawhney S K . Effect of cadmium on germination,amylases and rate of respiration of germinating pea seeds. Environmental Pollution, 1996,92(1):1-5.
doi: 10.1016/0269-7491(95)00093-3 pmid: 15091404
[19] Mrozek E J . Effect of mercury and cadmium on germination of Spartina alterniflora Loisel seeds at various salinities. Environmental & Experimental Botany, 1982,22(1):23-32.
doi: 10.1016/0098-8472(82)90005-3
[20] Fei-bo W U, Dong J, Jia G X , et al. Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agricultural Sciences in China, 2006,5(1):68-76.
doi: 10.1016/S1671-2927(06)60021-7
[21] Mihoub A . Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.). Comptes Rendus Biologies, 2005,328(1):33-41.
doi: 10.1016/j.crvi.2004.10.003
[22] 景俏丽, 董岁明, 侯琪琪 . 重金属Cd、Pb污染土壤对紫花苜蓿种子萌发和幼苗生长的影响. 安徽农业科学, 2018,46(22):119-121.
doi: 10.13989/j.cnki.0517-6611.2018.22.035
[23] He S, He Z, Yang X , et al. Soil biogeochemistry,plant physiology,and phytoremediation of cadmium-contaminated soils. Advances in Agronomy, 2015,134:135-225.
doi: 10.1016/bs.agron.2015.06.005
[24] 岳昊 . 不同烟草品种的耐镉性差异及其耐性机理研究. 长沙:湖南农业大学, 2015.
[25] 贺远 . 烟草重金属镉的吸收积累规律及其影响机制研究. 北京:中国农业科学院, 2014.
[26] 黄英华, 黄英梅, 李宝香 . 中国烟草行业的市场定位及其发展方向的初步探讨. 中国烟草学报, 2008,14(16):57-61.
doi: 10.3321/j.issn:1004-5708.2008.06.012
[27] Kuthanová A, Gemperlová L, Zelenková S , et al. Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells. Plant Physiology & Biochemistry, 2004,42(2):149-156.
doi: 10.1016/j.plaphy.2003.11.003 pmid: 15283131
[28] 赵秀兰, 刘晓 . 不同品种烟草生长和镉及营养元素吸收对镉胁迫响应的差异. 水土保持学报, 2009,23(1):117-121.
doi: 10.3321/j.issn:1009-2242.2009.01.025
[29] 赵中秋, 朱永官, 蔡运龙 . 镉在土壤-植物系统中的迁移转化及其影响因素. 生态环境学报, 2005,1(2):282-286.
doi: 10.3969/j.issn.1674-5906.2005.02.031
[30] 邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2000.
[31] 张宪政 . 植物生理学实验技术. 沈阳: 辽宁科学技术出版社, 1994.
[32] 汤绍虎, 罗充 . 植物生理学实验教程. 重庆: 西南师范大学出版社, 2012.
[33] 王树会 . 重金属汞对烟草种子发芽和幼苗中丙二醛的影响. 农业网络信息, 2017(7):144-146.
doi: 10.3969/j.issn.1672-6251.2007.07.054
[34] Alvarado V, Bradford K J . Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Science Research, 2005,15(2):77-88.
doi: 10.1079/SSR2005198
[35] 郭媛, 邱财生, 龙松华 . 镉胁迫对不同地区亚麻主栽品种种子萌发的影响. 作物杂志, 2017(4):146-151.
doi: 10.16035/j.issn.1001-7283.2015.04.032
[36] Zhou W . Deteriorative effects of cadmium stress on antioxidant system and cellular structure in germinating seeds of Brassica napus L. Journal of Agricultural Science & Technology, 2018,17(1):63-74.
[37] 李立芹, 鲁黎明, 卜贵鲜 . 镉胁迫对烟草幼苗生长和生理指标的影响. 贵州农业科学, 2010,38(5):35-37.
doi: 10.3969/j.issn.1001-3601.2010.05.010
[38] He J Y, Ren Y F, Pan X B , et al. Salicylic acid alleviates the toxicity effect of cadmium on germination,seedling growth,and amylase activity of rice. Journal of Plant Nutrition & Soil Science, 2010,173(2):300-305.
doi: 10.1002/jpln.200800302
[39] Feng J P, Shi Q H, Wang X F , et al. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Scientia Horticulturae, 2010,123(4):521-530.
doi: 10.1016/j.scienta.2009.10.013
[40] Andosch A, Affenzeller M J . A freshwater green alga under cadmium stress:ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. Journal of Plant Physiology, 2012,169(15):1489-1500.
doi: 10.1016/j.jplph.2012.06.002 pmid: 22762790
[41] Bouzid N, Youcef D . Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth,proline,root hydraulic conductivity and nutrient uptake. Flora, 2009,204(4):316-324.
doi: 10.1016/j.flora.2008.03.004
[42] Polle A, Klein T, Kettner C . Impact of cadmium on young plants of Populus euphratica and P.×canescens,two poplar species that differ in stress tolerance. New Forests, 2013,44(1):13-22.
doi: 10.1007/s11056-011-9301-9
[43] Qian H, Li J, Pan X , et al. Photoperiod and temperature influence cadmium's effects on photosynthesis-related gene transcription in Chlorella vulgaris. Ecotoxicology & Environmental Safety, 2010,73(6):1202-1206.
[44] Irfan M, Hayat S, Ahmad A , et al. Soil cadmium enrichment:Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 2013,20(1):1-10.
doi: 10.1016/j.sjbs.2012.11.004 pmid: 3730847
[45] Semane B, Dupae J, Cuypers A , et al. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. Journal of Plant Physiology, 2010,167(4):247-254.
doi: 10.1016/j.jplph.2009.09.015 pmid: 20005002
[46] Gonçalves J F, Becker A G, Cargnelutti D , et al. Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Brazilian Journal of Plant Physiology, 2007,19(3):119-223.
doi: 10.1590/S1677-04202007000200004
[47] 张浩, 陆宁, 钱晓刚 . 不同类型土壤重金属胁迫对烟叶脯氨酸含量的影响. 贵州农业科学, 2017(1):127-131.
doi: 10.3969/j.issn.1001-3601.2014.01.032
[1] 许杰,潘磊,杨帅,陈连红,耿世兵,马文广. 烟草花粉活力研究进展[J]. 作物杂志, 2019, (3): 10–14
[2] 耿歆淇,杨惠娟,秦艳青,杨兴有,赵世民,史宏志. 基于不同烟草类型基因组重测序的烟草SSR标记的开发和应用[J]. 作物杂志, 2019, (2): 84–89
[3] 陈芳,徐世晓,李晓辉,刘超,周建飞,王袁,田培,杨铁钊. 基于SSR标记的80份烟草种质指纹图谱的构建及遗传多样性分析[J]. 作物杂志, 2019, (1): 22–31
[4] 温日宇,刘建霞,张珍华,郭耀东,代旭瑶,姜庆国,樊丽生. 干旱胁迫对不同藜麦种子萌发及生理特性的影响[J]. 作物杂志, 2019, (1): 121–126
[5] 王宁,张静,黄进勇,史团省,杜建,岳彩鹏. 外源过氧化氢对烟草花芽分化的影响初探[J]. 作物杂志, 2018, (6): 116–123
[6] 王袁,郭泽,李晓辉,徐世晓,邢学霞,张思琦,何佳,刘超,陈芳,杨铁钊. 不同温度条件下根结线虫侵染对烟草根系的影响[J]. 作物杂志, 2018, (4): 161–166
[7] 张凯伦,陈寿明,殷红,李斌,谢良文,贺帆. 外源一氧化氮对盐胁迫下烟草幼苗生理及抗氧化性的影响[J]. 作物杂志, 2018, (3): 123–128
[8] 王传旗,徐雅梅,梁莎,沈振西,余成群,张尚雄,张卫红,王小川,苗彦军. 西藏野生老芒麦种子萌发对温度和水分的响应[J]. 作物杂志, 2017, (6): 165–169
[9] 李良木,范艺宽,许自成. 烟草钼素营养研究进展[J]. 作物杂志, 2017, (6): 12–16
[10] 闫寒,宋杭霖,张丽,闫晶,石贤吉,朱诗苗,刘璐,李虎林. 镉胁迫对烤烟农艺性状及生理生化指标的影响[J]. 作物杂志, 2017, (5): 156–161
[11] 王文浩,郑洪元,刘文俊,何丽芬,闫玉星. 外源NO对向日葵种子萌发和幼苗生长的影响[J]. 作物杂志, 2017, (4): 169–172
[12] 赵振杰,梁太波,陈千思,胡利伟,张艳玲,尹启生. 碳纳米材料对植物生长发育的调节作用[J]. 作物杂志, 2017, (2): 7–13
[13] 张紫薇,庞春花,张永清,倪瑞军,杨世芳,王璐瑗,刘丽琴. 等渗NaCl和PEG胁迫及复水处理对藜麦种子萌发及幼苗生长的影响[J]. 作物杂志, 2017, (1): 119–126
[14] 孙阳,王燚,孟瑶,樊海潮,曲丹阳,李晶,魏湜,顾万荣. 外源5-氨基乙酰丙酸对低温胁迫下玉米幼苗生长及光合特性的影响[J]. 作物杂志, 2016, (5): 87–93
[15] 李伟,张静,刘浩,闫辉,王超. 优化烟叶结构对红大上部烟叶质量和致香成分的影响[J]. 作物杂志, 2016, (5): 135–140
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[2] 袁文娅, 关淑艳, 马红丹, 等. 玉米自交系H99与齐319幼胚愈伤组织诱导条件的优化[J]. 作物杂志, 2013, (4): 48 –51 .
[3] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[4] 柴莹,徐永清,付瑶,李秀钰,贺付蒙,韩英琦,冯哲,李凤兰. 马铃薯干腐病病原镰孢菌体内产细胞壁降解酶特性研究[J]. 作物杂志, 2018, (4): 154 –160 .
[5] 王袁,郭泽,李晓辉,徐世晓,邢学霞,张思琦,何佳,刘超,陈芳,杨铁钊. 不同温度条件下根结线虫侵染对烟草根系的影响[J]. 作物杂志, 2018, (4): 161 –166 .
[6] 汤晓洁, 侯文胜, 李文滨, 等. 黑龙江省大豆产区疑似转基因大豆的分子检测[J]. 作物杂志, 2009, (4): 16 –19 .
[7] 梁海燕, 李海, 林凤仙, 张翔宇, 张知, 宋晓强. 不同糜子品种抗倒伏性田间鉴定及抗倒评价指标的筛选分析[J]. 作物杂志, 2018, (4): 37 –41 .
[8] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 69 –78 .
[9] 黄少辉,杨云马,刘克桐,杨军芳,邢素丽,孙彦铭,贾良良. 不同施肥方式对河北省小麦产量及肥料贡献率的影响[J]. 作物杂志, 2018, (1): 113 –117 .
[10] 刘建霞,张晓丹,王润梅,周凤,刘文英,刘支平. 6-BA浸种对盐胁迫下绿豆萌发及幼苗生理特性的影响[J]. 作物杂志, 2018, (1): 166 –172 .