作物杂志,2019, 第2期: 20–27 doi: 10.16035/j.issn.1001-7283.2019.02.004

所属专题: 水稻专题

• 专题综述 • 上一篇    下一篇

水稻颖花退化机理与调控途径

盛家艳,张伟杨,王志琴,杨建昌   

  1. 江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点实验室/江苏省粮食作物 现代产业技术协同创新中心/扬州大学农学院,225009,江苏扬州
  • 收稿日期:2018-11-01 修回日期:2018-12-17 出版日期:2019-04-15 发布日期:2019-04-12
  • 通讯作者: 杨建昌
  • 基金资助:
    国家自然科学基金(31471438);国家自然科学基金(31771710);江苏高校优势学科建设工程资助项目(PAPD-2);扬州大学高端人才资助项目(2015-01)

Mechanism and Regulation in Spikelet Degeneration of Rice

Jiayan Sheng,Weiyang Zhang,Zhiqin Wang,Jianchang Yang   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College,Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2018-11-01 Revised:2018-12-17 Online:2019-04-15 Published:2019-04-12
  • Contact: Jianchang Yang

摘要:

水稻颖花退化现象在水稻生长发育中普遍存在,是限制产量进一步提高的重要因素。颖花退化既受内在的遗传和生理的调控,也受外在环境的影响。以往有研究曾用不同遗传作图群体定位了分布在第1至第11号染色体上的多个水稻颖花退化数量性状基因座(QTL),但这些QTL对颖花退化的贡献率均不大;利用突变体材料确定了多个颖花退化候选基因,并克隆了其中的3个基因,但其分子机制仍不清楚。关于颖花退化的生理生化机制有很多假设,包括资源限制、自组织过程、化学调节等,但均缺乏有力证据。近年的研究表明,水稻穗分化期特别是减数分裂期内源油菜素甾醇(BRs)和多胺(PAs)水平较低、乙烯水平较高与颖花退化有密切的关系,提高BRs、PAs或PAs与乙烯的比值,可以减少颖花退化。水稻颖花退化的另一个重要原因是三磷酸腺苷(ATP)含量和能荷水平过低及活性氧(ROS)过度积累,使得膜脂过氧化伤害和小穗程序性细胞死亡,导致颖花退化。通过栽培措施适度提高减数分裂期植株含氮量或BRs含量可提高幼穗能荷水平,减少ROS积累,进而显著减少水稻颖花退化。今后需要从内在因素(遗传、生理生化)、植株整体水平、栽培调控和环境条件等方面深入研究水稻颖花退化的机理及其调控途径,破解水稻颖花退化的科学难题。

关键词: 水稻, 颖花退化, 化学调控

Abstract:

The phenomenon of spikelet degeneration is very common in developmental processes of rice, which is a major factor limiting grain yield. Spikelet degeneration is regulated both by genetics, physiology and environment factors. In the previous work, rice spikelet degeneration quantitative trait loci (QTL) distributed on chromosomes 1 to 11 have been mapped using different genetic mapping populations, however, the contribution rate of these QTLs to spikelet degeneration is small; many candidate genes for spikelet degradation have been identified using mutant materials, and 3 of them were successfully cloned, but their molecular mechanism remains unclear. There are many explanations about the physiological and biochemical mechanism on the spikelet degeneration, including resource limitation, self-organization, and chemical regulation. However, convincing evidences are still lacking to support the hypotheses. Recent studies have shown that low content of brassinosteroids (BRs) and polyamines (PAs) and a high ethylene level in young rice panicles during panicle development especially during meiosis are closely associated with spikelet degeneration, and spikelet degeneration could be decreased through increases in BRs and PAs levels and the ratio of PAs to ethylene. Another important reason for rice spikelet degeneration is low levels of adenosine triphosphate (ATP) content and energy charge and excessive accumulation of reactive oxygen species (ROS), which lead to injury of membrane lipid peroxidation and programmed cell death in spikelets, resulting in spikelet degeneration. An appropriate increase in contents of nitrogen or BRs in plants during meiosis through cultivation practices can enhance energy and decrease ROS levels, and consequently reduce spikelet degeneration. Further investigations are needed to deeply understand the mechanism underlying spikelet degeneration and regulation approaches from the internal factors of spikelets (genetic factors, physiological and biochemical factors), from the whole plant level, cultivation practices and environmental conditions, so that the difficult scientific problem of spikelet degeneration may be solved.

Key words: Rice (Oryza sativa L.), Spikelet degeneration, Chemical regulation

图1

水稻花粉母细胞减数分裂期植株氮含量与颖花退化率的关系"

图2

水稻花粉母细胞减数分裂期幼穗中油菜素甾醇含量与颖花退化率的关系"

[1] 杨文钰, 屠乃美 . 作物栽培学各论: 南方本. 北京: 中国农业出版社, 2011.
[2] 凌启鸿 . 作物群体质量. 上海: 上海科学技术出版社, 2000.
[3] Vriet C, Russinova E, Reuzeaua C . Boosting crop yields with plant steroids. The Plant Cell, 2012,24(3):842-857.
doi: 10.1105/tpc.111.094912 pmid: 22438020
[4] 王志敏 . 作物产品器官退化和败育的机理与调控.//“10000个科学难题”农业科学编委会. 10000个科学难题: 农业科学卷. 北京: 科学出版社, 2011: 111-114.
[5] Yang J C, Zhang J H . Grain-filling problem in 'super' rice. Journal of Experimental Botany, 2010,61(1):1-5.
doi: 10.1093/jxb/erp348
[6] Tan C J, Sun Y J, Xu H S , et al. Identification of quantitative trait locus and epistatic interaction for degenerated spikelets on the top of panicle in rice. Plant Breeding, 2011,130(2):177-184.
doi: 10.1111/j.1439-0523.2010.01770.x
[7] Xie R J, Deng L, Jing L , et al. Recent advances in molecular events of fruit abscission. Biologia Plantarum, 2012,57(2):201-209.
doi: 10.1007/s10535-012-0282-0
[8] Itoh J, Nonomura K, Ikeda K , et al. Rice (Oryza sativa) plant development:From zygote to spikelet. Plant & Cell Physiology, 2005,46(1):23-47.
[9] Zhang C X, Feng B H, Chen T T , et al. Sugars,antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regulation, 2017,83(2):1-11.
doi: 10.1007/s10725-017-0276-1
[10] 丁颖, 李乃铭, 徐雪宾 , 等. 水稻幼穗发育和谷粒充实过程观察. 农业学报, 1959,10(2):265-282.
[11] 松岛省三. 稻作理论与技术. 庞诚, 译. 北京:农业出版社, 1979: 63-74.
[12] 星川清亲. 解剖图说箱的生长. 蒋彭炎, 巧德海,译. 上海:上海科学技术出版社, 1980: 212-224.
[13] 吉田昌一. 稻作科学原理. 厉谋初, 译. 杭州:浙江科学技术出版社, 1984: 55-63.
[14] 凌启鸿, 张洪程, 苏祖芳 . 水稻叶龄模式. 北京: 利学出版社, 1994: 69-215.
[15] Zhang D, Yuan Z, An G , et al. Panicle Developmen. Genetics and Genomics of Rice. New York:Springer, 2013: 279-295.
[16] Inubushi T . Rice plant development:from zygote to spikelet. Journal of African Earth Sciences, 2014,97(3):273-296.
doi: 10.1016/j.jafrearsci.2014.04.034
[17] Li S, Qian Q, Fu Z , et al. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant Journal, 2010,58(4):592-605.
doi: 10.1111/j.1365-313X.2009.03799.x pmid: 19154200
[18] Mohapatra P K, Panigrahi R, Turner N C . Chapter five-physiology of spikelet development on the rice panicle :Is manipulation of apical dominance crucial for grain yield improvement? Advances in Agronomy, 2011,110:333-359.
doi: 10.1016/B978-0-12-385531-2.00005-0
[19] Kobata T, Yoshida H, Masiko U , et al. Spikelet sterility is associated with a lack of assimilate in high-spikelet-number rice. Agronomy Journal, 2013,105(6):1821.
doi: 10.2134/agronj2013.0115
[20] Yoshida A, Ohmori Y, Kitano H , et al. Aberrant spikelet and panicle1,encoding a TOPLESS-related transcriptional co-repressor,is involved in the regulation of meristem fate in rice. Plant Journal, 2012,70(2):327-339.
doi: 10.1111/j.1365-313X.2011.04872.x pmid: 22136599
[21] 李玲锋, 孙晓棠, 欧阳林娟 , 等. 水稻小穗退化的影响因素及遗传研究进展. 核农学报, 2018,32(2):291-296.
doi: 10.11869/j.issn.100-8551.2018.02.0291
[22] Kuanar S R, Panigrahi R, Kariali E , et al. Apoplasmic assimilates and grain growth of contrasting rice cultivars differing in grain dry mass and size. Plant Growth Regulation, 2010,61(2):135-151.
doi: 10.1007/s10725-010-9459-8
[23] Ishimaru T, Hirose T, Matsuda T , et al. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L. ):comparison of caryopses located at different positions in a panicle. Plant and Cell Physiology, 2005,46(4):620-628.
doi: 10.1093/pcp/pci066
[24] Tsai-Mei O L, Setter T L . Enzyme activities of starch and sucrose pathways and growth of apical and basal maize kernels. Plant Physiology, 1985,79(3):848-851.
doi: 10.1104/pp.79.3.848 pmid: 16664503
[25] Kamoi T, Kenzo T, Kuraji K , et al. Abortion of reproductive organs as an adaptation to fluctuating daily carbohydrate production. Oecologia, 2008,154(4):663-677.
doi: 10.1007/s00442-007-0864-2 pmid: 17940803
[26] Yang H J, Yang L X, Huang J Y . Effect of free-air CO2 enrichment on spikelet differentiation and degeneration of japonica rice (Oryza sativa L. ) cultivar Wuxiangjing 14. Acta Agronomica Sinica, 2006,32(1):118-124.
[27] Wang Y, Yang L, Kobayashi K , et al. Investigations on spikelet formation in hybrid rice as affected by elevated tropospheric ozone concentration in China. Agriculture Ecosystems & Environment, 2012,150:63-71.
doi: 10.1016/j.agee.2012.01.016
[28] Afza R, Shen M, Zapataarias F J , et al. Effect of spikelet position on rice anther culture efficiency. Plant Science, 2000,153(2):155-159.
doi: 10.1016/S0168-9452(99)00266-6 pmid: 10717321
[29] Samuelajr O, James S, Jamesh O . Association mapping of grain quality and flowering time in elite japonica rice germplasm. Journal of Cereal Science, 2010,51(3):337-343.
doi: 10.1016/j.jcs.2010.02.001
[30] Zhang W, Chen Y, Wang Z , et al. Polyamines and ethylene in rice young panicles in response to soil drought during panicle differentiation. Plant Growth Regulation, 2017,82(3):491-503.
doi: 10.1007/s10725-017-0275-2
[31] 张伟杨 . 水分和氮素对水稻颖花发育与籽粒灌浆的调控机制. 扬州:扬州大学, 2018.
[32] Kobata T, Tanaka S, Utumi M , et al. Sterility in rice (Oryza sativa L.) subject to drought during the booting stage occurs not because of lack of assimilate or of water-deficit in the shoot but because of dehydration of the root-zone. Japanese Journal of Crop Science, 1994,63(3):510-517.
doi: 10.1626/jcs.63.510
[33] Ganeshaiah K N, Shaanker R U . Seed and fruit abortion as a process of self organization among developing sinks. Physiologia Plantarum, 2010,91(1):81-89.
doi: 10.1111/j.1399-3054.1994.tb00662.x
[34] Verma V, Ravindran P, Kumar P P . Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 2016,16(1):86-88.
doi: 10.1186/s12870-016-0771-y pmid: 27079791
[35] Yang J, Zhang J, Wang Z , et al. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology, 2001,127(1):315-323.
doi: 10.1104/pp.127.1.315
[36] Ding C, You J, Chen L , et al. Nitrogen fertilizer increases spikelet number per panicle by enhancing cytokinin synthesis in rice. Plant Cell Reports, 2014,33(2):363-371.
doi: 10.1007/s00299-013-1536-9 pmid: 24258242
[37] Pandey G K . Mechanism of plant hormone signaling under stress. New Jersey:Wiley Blackwell, 2017.
[38] Cline M G . The role of hormones in apical dominance. New approaches to an old problem in plant development. Physiologia Plantarum, 2010,90(1):230-237.
doi: 10.1111/j.1399-3054.1994.tb02216.x
[39] Finkelstein R R . The role of hormones during seed development and germination//Davies P J. Plant Hormones,Biosynthesis,Signal Transduction,Action! Dordrecht, The Netherlands:Kluwer Academic Publishers, 2004: 513-517.
[40] Zhang W, Cao Z, Zhou Q , et al. Grain filling characteristics and their relations with endogenous hormones in large- and small-grain mutants of rice. PloS ONE, 2016,11(10):e0165321.
doi: 10.1371/journal.pone.0165321 pmid: 27780273
[41] 王丰, 程方民, 刘奕 , 等. 不同温度下灌浆期水稻籽粒内源激素含量的动态变化. 作物学报, 2006,32(1):25-29.
[42] 杨建昌, 刘凯, 张慎凤 , 等. 水稻减数分裂期颖花中激素对水分胁迫的响应. 作物学报, 2008,34(1):111-118.
doi: 10.3321/j.issn:0496-3490.2008.01.017
[43] Yokoyama C, Tsuda M, Hirai Y . Effects of plant growth regulators on number of spikelets per panicle in rice (Oryza sativa L. ) under saline flooding conditions. Japanese Journal of Crop Science, 2002,71(3):376-382.
doi: 10.1626/jcs.71.376
[44] Werner T, Schmülling T . Cytokinin action in plant development. Current Opinion in Plant Biology, 2009,12(5):527-538.
doi: 10.1016/j.pbi.2009.07.002
[45] Zheng C, Zhu Y, Wang C , et al. Wheat grain yield increase in response to pre-anthesis foliar application of 6-benzylaminopurine is dependent on floret development. PloS ONE, 2016,11(6):e0156627.
doi: 10.1371/journal.pone.0156627 pmid: 27258059
[46] Zheng C, Zhu Y, Zhu H , et al. Floret development and grain setting characteristics in winter wheat in response to pre-anthesis applications of 6-benzylaminopurine and boron. Field Crops Research, 2014,169:70-76.
doi: 10.1016/j.fcr.2014.09.005
[47] Cheng C, Lur H . Ethylene may be involved in abortion of the maize caryopsis. Physiologia Plantarum, 2010,98(2):245-252.
doi: 10.1034/j.1399-3054.1996.980205.x
[48] Moshe H, Joseph R, Eliezer E G , et al. The novel ethylene antagonist,3-cyclopropyl-1-enyl-propanoic acid sodium salt (CPAS),increases grain yield in wheat by delaying leaf senescence. Plant Growth Regulation, 2014,73(3):249-255.
doi: 10.1007/s10725-013-9885-5
[49] Mohapatra P K, Naik P K, Patel R . Ethylene inhibitors improve dry matter partitioning and development of late flowering spikelets on rice panicles. Australian Journal of Plant Physiology, 2000,27(4):311-323.
doi: 10.1071/PP99057
[50] Davies W J, Jones H G . Abscisic acid physiology and biochemistry. Bios Scientific, 1991,42:7-17.
[51] Yang J C, Zhang J H, Liu K , et al. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytologist, 2010,171(2):293-303.
doi: 10.1111/j.1469-8137.2006.01753.x pmid: 16866937
[52] Pei G . Progress in studies on drought resistance mechanisms in wheats. Biotechnology Bulletin, 2010,20(4):22-27.
doi: 10.1080/00949651003724790
[53] 张伟杨, 钱希旸, 李银银 , 等. 土壤干旱对小麦生理性状和产量的影响. 麦类作物学报, 2016,36(4):491-500.
doi: 10.7606/j.issn.1009-1041.2016.04.15
[54] Yang J C, Zhang J H, Wang Z Q , et al. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. Journal of Experimental Botany, 2006,57(1):149-160.
doi: 10.1093/jxb/erj018 pmid: 16330527
[55] Yang J C, Zhang J H, Liu K , et al. Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis. Journal of Plant Growth Regulation, 2007,26(4):318-328.
doi: 10.1007/s00344-007-9013-8
[56] Toyota M, Tsutsui I, Kusutani A , et al. Initiation and development of spikelets and florets in wheat as influenced by shading and nitrogen supply at the spikelet phase. Plant Production Science, 2001,4(4):283-290.
doi: 10.1626/pps.4.283
[57] Nayyar H, Walia D P . Genotypic variation in wheat in response to water stress and abscisic acid-induced accumulation of osmolytes in developing grains. Journal of Agronomy & Crop Science, 2010,190(1):39-45.
doi: 10.1046/j.0931-2250.2003.00072.x
[58] 杨卫兵, 王振林, 尹燕枰 , 等. 外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响. 中国农业科学, 2011,44(13):2673-2682.
doi: 10.3864/j.issn.0578-1752.2011.13.005
[59] Wu C Y, Trieu A, Radhakrishnan P , et al. Brassinosteroids regulate grain filling in rice. Plant Cell, 2008,20(8):2130-2145.
doi: 10.1105/tpc.107.055087 pmid: 18708477
[60] Zhi H, Guo H, Li X , et al. Regulatory function of polyamine oxidase-generated hydrogen peroxide in ethylene-induced stomatal closure in Arabidopsis thaliana. Journal of Integrative Agriculture, 2013,12(2):251-262.
doi: 10.1016/S2095-3119(13)60224-5
[61] Fariduddin Q, Yusuf M, Ahmad I , et al. Brassinosteroids and their role in response of plants to abiotic stresses. Biologia Plantarum, 2013,58(1):9-17.
doi: 10.1007/s10535-013-0374-5
[62] Jiang W B, Lin W H . Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiology, 2013,162(2):1965-1977.
doi: 10.1104/pp.113.217703
[63] Zhao J F, Wu C X, Yuan S J , et al. Kinase activity of OsBRI1 is essential for brassinosteroids to regulate rice growth and development. Plant Science, 2013, 199-200(2):113-120.
doi: 10.1016/j.plantsci.2012.10.011 pmid: 23265324
[64] Zhang W Y, Zhu K Y, Wang Z Q , et al. Brassinosteroids function in spikelet differentiation and degeneration in rice. Journal of Integrative Plant Biology, 2018,doi: 10.1111/jipb.12722.
[65] Alcazar R, Altabella T, Marco F , et al. Polyamines:Molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010,231(6):1237-1249.
doi: 10.1007/s00425-010-1130-0 pmid: 20221631
[66] Chen T T, Xu Y J, Wang J C , et al. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. Journal of Experimental Botany, 2013,64(8):2523-2538.
doi: 10.1093/jxb/ert115 pmid: 23606413
[67] Nambeesan S, AbuQamar S,Laluk K ,et al. Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to botrytis cinerea in tomato. Plant Physiology, 2012,158(2):1034-1045.
doi: 10.1104/pp.111.188698 pmid: 22128140
[68] 张伟杨, 徐云姬, 钱希旸 , 等. 小麦籽粒游离多胺对土壤干旱的响应及其与籽粒灌浆的关系. 作物学报, 2016,42(6):860-872.
doi: 10.3724/SP.J.1006.2016.00860
[69] 戚华雄, 杜雪树, 李进波 . 水稻颖花退化的遗传研究进展. 湖北农业科学, 2014,53(24):5905-5907.
doi: 10.14088/j.cnki.issn0439-8114.2014.24.001
[70] Yamagishi J, Miyamoto N, Hirotsu S , et al. QTLs for branching,floret formation,and pre-flowering floret abortion of rice panicle in a temperate japonica tropical japonica cross. Theoretical and Applied Genetics, 2004,109(8):1555-1561.
doi: 10.1007/s00122-004-1795-5 pmid: 15365628
[71] 王斌, 刘贺梅, 毛毕刚 , 等. 水稻顶部小穗退化性状的QTL分析. 中国水稻科学, 2011,25(5):561-564.
doi: 10.3969/j.issn.10017216.2011.05.016
[72] 高素伟, 张玲, 毛毕刚 , 等. 水稻穗顶部退化突变体L-05261的遗传分析. 作物学报, 2011,37(11):1935-1941.
doi: 10.3724/SP.J.1006.2011.01935
[73] 徐华山, 孙永建, 周红菊 , 等. 构建水稻优良恢复系背景的重叠片段代换系及其效应分析. 作物学报, 2007,33(6):979-986.
doi: 10.3321/j.issn:0496-3490.2007.06.019
[74] Bai J, Zhu X, Wang Q , et al. Rice TUTOU1 encodes a suppressor of cAMP receptor-like protein that is important for actin organization and panicle development. Plant Physiology, 2015,169(2):1179-1191.
doi: 10.1104/pp.15.00229
[75] 李真, 毛毕刚, 衡月芹 , 等. 水稻穗顶部退化基因PAA2的精细定位. 植物遗传资源学报, 2014,15(5):1023-1027.
doi: 10.13430/j.cnki.jpgr.2014.05.015
[76] Heng Y Q, Wu C Y, Long Y , et al. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell, 2018,30(4):889-906.
doi: 10.1105/tpc.17.00998 pmid: 29610210
[77] 孙羲 . 作物营养与施肥. 北京: 农业出版社, 1990.
[78] 章星传, 黄文轩, 朱宽宇 , 等. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响. 作物杂志, 2017(4):69-78.
[79] 王惠芝, 李刚华, 王绍华 , 等. 水稻穗分化期碳氮积累特征及其与每穗颖花数的关系. 中国作物学会栽培专业委员会换届暨学术研讨会论文集, 2007.
[80] 乔云发, 罗盛国, 刘元英 , 等. 叶龄模式氮肥调控对水稻颖花根活量的影响. 农业系统科学与综合研究. 2006,22(2):121-124.
doi: 10.3969/j.issn.1001-0068.2006.02.011
[81] 林忠成, 李土明, 吴福观 , 等. 基蘖肥与穗肥氮比例对双季稻产量和碳氮比的影响. 植物营养与肥料学报, 2011,17(2):269-275.
doi: 10.11674/zwyf.2011.0058
[82] 潘俊峰, 王博, 崔克辉 , 等. 氮肥对水稻节间和叶鞘非结构性碳水化合物积累转运特征的影响. 中国水稻科学, 2016,30(3):273-282.
doi: 10.16819/j.1001-7216.2016.5128
[83] 董明辉, 谢裕林, 乔中英 , 等. 水稻不同粒位籽粒淀粉与蛋白质累积动态差异. 中国水稻科学, 2011,25(3):297-306.
doi: 10.3969/j.issn.1001-7216.2011.03.011
[84] 王夏雯, 王绍华, 李刚华 , 等. 氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系. 作物学报, 2008,34(12):2184-2189.
doi: 10.3724/SP.J.1006.2008.02184
[85] 姬生栋, 栗鹏, 李江伟 , 等. 水稻株系与亲本间灌浆期POD酶谱及遗传效应分析. 作物杂志, 2017(5):17-20.
doi: 10.16035/j.issn.1001-7283.2018.05.003
[1] 尹晓明,李辰. 不同氮效率水稻品种叶片光合作用及氮利用特征的差异分析[J]. 作物杂志, 2019, (1): 90–96
[2] 吴海兵,刘道红,钟鸣,汪友元. 水分管理和钾肥施用对水稻产量和抗倒伏性的影响[J]. 作物杂志, 2019, (1): 127–133
[3] 唐双勤,吴自明,谭雪明,曾勇军,石庆华,潘晓华,曾研华. 直播早籼稻品种芽期耐冷性鉴定研究[J]. 作物杂志, 2019, (1): 159–167
[4] 崔艳妮,詹俊辉,闫鹏起,可文静,宋宁垣,张中南,王留行,黄岩,张静,赵全志. 氮肥不同施用比例对豫南稻区杂交籼稻子粒灌浆特性及产量的影响[J]. 作物杂志, 2018, (6): 103–109
[5] 赵金星,周伟,战英策,历永杰,高洪波,何松榆,张玉先,张明聪. 土壤改良剂对盐化草甸土物理性质及水稻产量的影响[J]. 作物杂志, 2018, (6): 138–143
[6] 王付华,薛华政,王亚,王生轩,王越涛,付景,杨文博,白涛,李俊周,尹海庆. 利用CRISPR/CAS9基因编辑技术创制香型郑稻19新种质[J]. 作物杂志, 2018, (6): 36–42
[7] 姬生栋,栗鹏,李江伟,宋刘敏,刘苗苗,高狂龙,尹海庆. 水稻株系与亲本间灌浆期POD酶谱及遗传效应分析[J]. 作物杂志, 2018, (5): 17–20
[8] 马孟莉,郑云,周晓梅,张婷婷,张晓倩,卢丙越. 云南哈尼梯田红米地方品种遗传多样性分析[J]. 作物杂志, 2018, (5): 21–26
[9] 陈瑛瑛,王徐艺凌,朱宇涵,武威,刘涛,孙成明. 水稻穗部氮素含量高光谱估测研究[J]. 作物杂志, 2018, (5): 116–120
[10] 隋阳辉,高继平,刘彩虹,徐正进,王延波,赵海岩. 东北冷凉地区秸秆还田方式对水稻光合、干物质积累及氮素吸收的影响[J]. 作物杂志, 2018, (5): 137–143
[11] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 69–78
[12] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48–52
[13] 曾波. 近30年来我国水稻主要品种更新换代历程浅析[J]. 作物杂志, 2018, (3): 1–7
[14] 赫臣,郑桂萍,赵海成,陈立强,李红宇,吕艳东,宋江. 增施腐殖酸及减量施肥对盐碱地水稻穗部性状与产量的影响[J]. 作物杂志, 2018, (3): 129–134
[15] 崔勇. 稻田水旱轮作的研究进展[J]. 作物杂志, 2018, (3): 8–14
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 马瑞琦,亓振,常旭虹,王德梅,陶志强,杨玉双,冯金凤,孙敏,赵广才. 化控剂对冬小麦植株性状及产量品质的调节效应[J]. 作物杂志, 2018, (1): 133 –140 .
[5] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[6] 李红燕,王永宏,赵如浪,张文杰,明博,谢瑞芝,王克如,李璐璐,高尚,李少昆. 宁夏引/扬黄灌区玉米子粒脱水模型的构建与应用[J]. 作物杂志, 2018, (4): 149 –153 .
[7] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[8] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[9] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[10] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .