作物杂志,2020, 第2期: 97–104 doi: 10.16035/j.issn.1001-7283.2020.02.015

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

覆盖对旱地冬小麦植株和旗叶水分含量及产量的影响

张博1,高甜甜1,程宏波2,李瑞1,柴雨葳1,李亚伟1,柴守玺1()   

  1. 1 甘肃省干旱生境作物学重点实验室/甘肃农业大学农学院,730070,甘肃兰州
    2 甘肃农业大学生命科学技术学院,730070,甘肃兰州
  • 收稿日期:2019-10-22 修回日期:2019-12-09 出版日期:2020-04-15 发布日期:2020-04-13
  • 通讯作者: 柴守玺 E-mail:sxchai@126.com
  • 作者简介:张博,主要从事作物栽培学与生理生态,E-mail:1640133365@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0200401);国家自然科学基金(31560356);国家自然科学基金(31760362)

Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland

Zhang Bo1,Gao Tiantian1,Cheng Hongbo2,Li Rui1,Chai Yuwei1,Li Yawei1,Chai Shouxi1()   

  1. 1 Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2019-10-22 Revised:2019-12-09 Online:2020-04-15 Published:2020-04-13
  • Contact: Shouxi Chai E-mail:sxchai@126.com

摘要:

为探明西北半干旱雨养农业区冬小麦生产中不同覆盖栽培方式的增产机理,设置了秸秆带状覆盖(MS)、地膜覆盖(PM)、露地种植(CK)3种栽培方式,其中MS处理设置了58.82%、50.00%、41.66%、37.04% 4个覆盖度,分别在种植带内播种3行(MS3)、4行(MS4)、5行(MS5)、6行(MS6)小麦,研究了不同覆盖度对小麦灌浆阶段植株和旗叶的水分变化情况,及其对产量形成的影响。结果表明,MS处理平均较CK增产9.05%,以MS5增产幅度最大(10.34%),PM处理较CK增产11.42%。在灌浆期,MS处理小麦植株含水量、旗叶相对含水量、12和24h内离体旗叶失水速率分别较CK提高了1.49~2.49个百分点、3.29~5.26个百分点、7.11~8.19mg/(g·h)和3.77~4.55mg/(g·h),较PM处理分别提高了3.24~4.37个百分点、5.34~10.46个百分点、27.03~28.66mg/(g·h)、6.67~12.28mg/(g·h),不同覆盖度间比较,各指标较CK和PM处理的提高幅度均随覆盖度降低而降低。地膜覆盖可增加分蘖、促进植株营养生长,从而提高小麦产量;秸秆带状覆盖提高灌浆阶段植株含水量和旗叶相对含水量,延迟功能叶衰老,进而增加粒重,是其较露地增产的原因之一。秸秆带状覆盖条件下,MS5与地膜覆盖的增产效应相近,是较为适宜的秸秆覆盖栽培模式。

关键词: 秸秆带状覆盖, 旱地, 冬小麦, 植株含水量, 旗叶含水量, 产量

Abstract:

In order to explore the mechanism of increasing yield of winter wheat in semiarid rain-fed agricultural area in northwest China, straw strips mulching (MS), plastic film mulching (PM), traditional flat planting without mulching (CK) were established in which MS set up with 58.82%, 50.00%, 41.66% and 37.04% maize straw coverage, and 3 rows (MS3), 4 rows (MS4), 5 rows (MS5), 6 rows (MS6) of winter wheat were planted in the planting zone, respectively for studying the effects of mulching on the water content of wheat plants and flag leaves at grain filling stage and their effects on yield of winter wheat. The results showed that the average yield of MS treatment was 9.05% higher than that of CK with MS5 increasing the maximum yield (10.34%) whereas, PM treatment increased production by 11.42% over CK. At the grain filling stage, MS increased the plant water content (PWC), relative water content of flag leaves (RWC) and rate of water loss from flag leaves in vitro within 12h (RWL12) and 24h (RWL24) were higher than CK with 1.49-2.49 percentage points, 3.29-5.26 percentage points, 7.11-8.19mg/(g?h) and 3.77-4.55mg/(g?h), respectively. Compared with PM, the PWC, RWC, RWL12 and RWL24 of MS increased by 3.24-4.37 percentage points, 5.34-10.46 percentage points, 27.03-28.66mg/(g?h) and 6.67-12.28mg/(g?h), respectively. Comparison between different maize coverage treatments, the increase extents of PWC, RWC, RWL12 and RWL24 compared with CK and PM decreased with the decrease of maize straw coverage. PM treatment increased tiller number, promoted plant vegetative growth and thus increased winter wheat yield, while straw strips mulching increased PWC and RWC at grain filling stage, delayed senescence of functional leaves and then increased grain weight which was one of the reasons for increasing grain yield compared with CK. Under the conditions of straw strip mulching, the yield increase effect of MS5 and PM was similar which was a more suitable cultivation mode.

Key words: Straw strip mulching, Dryland, Winter wheat, Plant water content, Flag leaf water content, Yield

图1

不同栽培模式示意图"

表1

不同栽培模式试验方案"

处理
Treatment
种植带∶覆盖带
Planting belt∶
mulching belt
覆盖度(%)
Fraction of
coverage
行距(cm)
Row
spacing
播种方式
Seeding
method
MS3 35cm∶50cm 58.82 17 机械条播
MS4 50cm∶50cm 50.00 17 机械条播
MS5 70cm∶50cm 41.66 17 机械条播
MS6 85cm∶50cm 37.04 17 机械条播
PM 0 0 20 全膜覆土穴播
CK 0 0 17 机械条播

图2

不同覆盖方式对冬小麦植株含水量的影响"

图3

不同覆盖方式对冬小麦旗叶相对含水量的影响"

表2

覆盖对旗叶相对含水量的影响"

处理
Treatment
花后7d
7d after flowering
花后14d
14d after flowering
花后21d
21d after flowering
花后28d
28d after flowering
变异系数(%)
Variation coefficient
MS3 87.45a 83.12a 79.48a 61.20a 14.83
MS4 85.88ab 81.00b 78.03b 60.77a 14.29
MS5 84.68b 79.85b 76.65b 59.92a 14.29
MS6 81.01c 76.54c 73.59c 57.05b 14.51
CK 81.28c 76.84c 71.67d 55.50c 15.78
PM 79.42d 73.47d 66.47e 49.94d 18.92

图4

不同覆盖方式对离体旗叶失水速率的影响"

表3

覆盖对旗叶离体失水速率的影响"

失水时间
Time to lose water (h)
处理
Treatment
花后7d
7d after flowering
花后14d
14d after flowering
花后21d
21d after flowering
变异系数
Variation coefficient (%)
MS3 134.35a 115.17a 92.18a 18.54
MS4 133.48ab 114.55a 91.50a 18.58
0~12 MS5 131.70b 113.36a 90.67a 18.36
MS6 122.94c 104.22b 85.38b 18.03
CK 122.42c 103.71b 82.82b 19.24
PM 101.96d 84.05c 62.90c 23.56
MS3 72.52a 63.36a 53.03a 15.49
MS4 71.54ab 62.31a 52.90a 14.97
0~24 MS5 70.08b 62.07a 52.79a 14.03
MS6 66.12c 57.79b 49.25b 14.61
CK 65.51c 56.88b 48.22b 15.20
PM 57.79d 52.02c 43.32c 12.06

表4

不同覆盖方式对冬小麦产量、产量构成因素、群体生物量、株高、收获指数及结实小穗数的影响"

处理
Treatment
产量
Yield
(kg/hm2)
穗数
Spike number
(×104/hm2)
穗粒数
Kernel number per spike
千粒重
1000-grain weight (g)
生物产量
Biological yield
(kg/m2)
株高
Plant height
(cm)
收获指数
Harvest index
(%)
结实小穗数
Number of spikelet
MS3 4 435.06a 221.10b 45.24a 47.68a 10 127.40b 102.70bc 43.83b 19.73a
MS4 4 474.39a 228.70b 45.38a 47.91a 10 202.21b 103.83b 43.86b 19.91a
MS5 4 533.56a 235.49b 45.13a 47.39a 10 291.55b 105.30a 44.14b 19.74a
MS6 4 480.85a 227.00b 45.87a 47.81a 10 213.18b 102.57bc 43.87b 20.26a
PM 4 578.13a 283.66a 36.91b 48.58a 11 193.38a 103.70b 36.73c 16.63c
CK 4 108.77b 229.45b 44.66a 44.55b 9 925.24b 101.38c 46.20a 17.33b
变异系数(%)
Variation coefficient
3.78 9.70 7.82 2.98 4.29 1.29 9.13 8.13
最大差异率(%)
Maximum variation rate
11.42 28.29 24.27 9.04 12.78 3.63 25.79 21.80

表5

冬小麦产量及其构成因素、植株含水量、离体旗叶失水速率、旗叶相对含水量以及结实小穗数的相关分析"

指标
Index
产量
Yield
穗数
Spike
number
穗粒数
Kernel number
per spike
千粒重
1000-grain
weight
植株含水量Plant water content RWL12 RWL24 RWC
7d 35d 7~35d平均
Mean of 7-35d
穗数Spike number -0.455
穗粒数Kernel number per spike -0.205 -0.898**
千粒重1000-grain weight -0.965** -0.425 -0.179
7d植株含水量
Water content of plant on day 7
-0.120 -0.784** -0.695** -0.056
35d植株含水量
Water content of plant on day 35
-0.081 -0.864** -0.829** -0.073 0.853**
35d平均植株含水量
Average plant water content within 35 day
-0.016 -0.845** -0.800** 0.014 0.932** 0.953**
RWL12 -0.144 -0.893** -0.889** -0.149 0.870** 0.912** 0.934**
RWL24 -0.253 -0.662** -0.687** 0.240 0.824** 0.844** 0.916** 0.895**
RWC -0.008 -0.774** -0.739** 0.022 0.903** 0.862** 0.932** 0.950** 0.957**
结实小穗数Number of spikelets bearing -0.297 -0.693** -0.776** 0.288 0.707** 0.855** 0.859** 0.799** 0.848** 0.764**
[1] Lin W, Liu W Z, Xue Q W . Spring maize yield,soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau. Scientific Reports, 2017,7:1-10.
[2] 山仑 . 旱地农业技术发展趋向. 中国农业科学, 2002,35(7):848-855.
[3] Zhang S L, Li P R, Yang X Y , et al. Effects of tillage and plastic mulch on soil water,growth and yield of spring-sown maize. Soil and Tillage Research, 2011,112(1):92-97.
[4] Liu W Z, Zhang X C, Dang T H , et al. Soil water dynamics and deep soil recharge in a record wet year in the southern Loess Plateau of China. Agricultural Water Management, 2010,97(8):1133-1138.
[5] Hou X Y, Wang F X, Han J J , et al. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China. Agricultural and Forest Meteorology, 2010,150(1):115-121.
[6] Zhang S L, Lövdahl L, Harald G , et al. Effects of mulching and catch cropping on soil temperature,soil moisture and wheat yield on the Loess Plateau of China. Soil and Tillage Research, 2009,102(1):78-86.
[7] He X F, Cao H, Li F M . Econometric analysis of the determinants of adoption of rainwater harvesting and supplementary irrigation technology (RHSIT) in the semiarid Loess Plateau of China. Agricultural Water Management, 2007,89(3):243-250.
[8] 陈润羊, 田万慧 . 西北干旱区发展节水农业保障体系研究. 资源开发与市场, 2011,27(5):461-463.
[9] 程宏波, 牛建彪, 柴守玺 , 等. 不同覆盖材料和方式对旱地春小麦产量及土壤水温环境的影响. 草业学报, 2016,25(2):47-57.
[10] 黄明镜, 晋凡生, 池宝亮 , 等. 地膜覆盖条件下旱地冬小麦的耗水特征. 干旱地区农业研究, 1999,17(2):20-23.
[11] 董孔军, 杨天育, 何继红 , 等. 西北旱作区不同地膜覆盖种植方式对谷子生长发育的影响. 干旱地区农业研究, 2013,31(1):36-40.
[12] 王彩绒, 田霄鸿, 李生秀 . 覆膜集雨栽培对冬小麦产量及养分吸收的影响. 干旱地区农业研究, 2004,22(2):108-111.
[13] 李廷亮, 谢英荷, 高志强 , 等. 周年覆盖对黄土旱塬冬小麦产量及降水利用率的影响. 水土保持学报, 2018,32(1):332-338.
[14] 段德玉, 刘小京, 李伟强 , 等. 夏玉米地膜覆盖栽培的生态效应研究. 干旱地区农业研究, 2003,21(4):6-9.
[15] Fabio S, Galieni A, Speca S , et al. Effects of straw mulch on growth and yield of durum wheat during transition to conservation agriculture in mediterranean environment. Field Crops Research, 2014,167(10):51-63.
[16] 杨长刚 . 半干旱雨养区覆盖种植冬麦田土壤水热效应. 兰州:甘肃农业大学, 2015.
[17] 李守蕾 . 旱地秸秆带状覆盖不同覆盖量对冬小麦土壤水热变化的影响. 兰州:甘肃农业大学, 2015.
[18] 何海英, 冯佰利, 高小丽 , 等. 三种栽培模式下不同基因型冬小麦旗叶衰老代谢比较. 生态学报, 2009,29(7):3775-3781.
[19] Kaur J, Mahal S S . Influence of paddy straw mulch on crop productivity and economics of bed and flat sown wheat (Triticum aestivum) under different irrigation schedules. Journal of Environmental Biology, 2017,38(2):243-250.
[20] Wu X H, Wang W, Xie L X , et al. Effects of rice straw mulching on N2O emissions and maize productivity in a rain-fed upland. Environmental Science and Pollution Research, 2017,25(7):6407-6413.
[21] Li C S, Li J G, Tang Y L , et al. Stand establishment,root development and yield of winter wheat as affected by tillage and straw mulch in the water deficit hilly region of southwestern China. Journal of Integrative Agriculture, 2016,15(7):1480-1489.
[22] Ling Y, Zhang Z C, Cao X C , et al. Responses of rice production,milled rice quality and soil properties to various nitrogen inputs and rice straw incorporation under continuous plastic film mulching cultivation. Field Crops Research, 2014,155(1):164-171.
[23] 王涛, 张立功, 马建辉 , 等. 旱地马铃薯秸秆覆土覆盖栽培技术. 中国马铃薯, 2018,32(3):152-154.
[24] 曾宪楠, 高斯倜, 冯延江 , 等. 水稻秸秆还田对土壤培肥及水稻产量的影响研究进展. 江苏农业科学, 2018,46(18):13-16.
[25] Li Z, Lai X F, Yang Q , et al. In search of long-term sustainable tillage and straw mulching practices for a maize-winter wheat-soybean rotation system in the Loess Plateau of China. Field Crops Research, 2018,217(3):199-210.
[26] Wang J, Rajan G, Fu X , et al. Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield. Agricultural Water Management, 2018,206(7):95-101.
[27] Wang J D, Zhang Y Q, Gong S H , et al. Evapotranspiration,crop coefficient and yield for drip-irrigated winter wheat with straw mulching in North China Plain. Field Crops Research, 2018,217(3):218-228.
[28] 高红军 . 地膜覆盖栽培技术的生产应用及问题分析. 农业科技与装备, 2017(11):3-4.
[29] 李辉, 柴守玺, 常磊 , 等. 西北半干旱区秸秆带状覆盖对土壤水分及马铃薯产量的影响. 水土保持学报, 2017,31(6):148-156.
[30] Vial L K, Lefroy R B, Fukai S . Application of mulch under reduced water input to increase yield and water productivity of sweet corn in a low land rice system. Field Crops Research, 2015,171(2):120-129.
[31] Lu X J, Li Z Z, Sun Z H , et al. Straw mulching reduces maize yield,water,and nitrogen use in northeastern China. Agronomy Journal, 2015,107(1):406-414.
[32] 常磊, 韩凡香, 柴雨葳 , 等. 秸秆带状覆盖对半干旱雨养区冬小麦田地温和产量的影响. 应用生态学报, 2018,29(9):2949-2958.
[33] 白志英, 李存东, 孙红春 . 干旱胁迫对小麦染色体代换系旗叶相对含水量和离体失水速率的影响. 华北农学报, 2008,23(1):62-65.
[34] 马瑞崑, 贾秀领, 张全国 . 冬小麦离体叶片失水速率和农艺性状的同步选育效应. 河北农业大学学报, 2002,25(2):4-6,9.
[35] 王克鹏, 张仁陟, 董博 , 等. 长期保护性耕作对黄土高原旱地土壤水分及作物叶水势的影响. 生态学报, 2014,34(13):3752-3761.
[36] 宋亚丽 . 秸秆带状覆盖不同种植方式和播量对旱地冬小麦土壤水分的影响. 兰州:甘肃农业大学, 2016.
[37] 杨长刚 . 覆膜对旱作小麦水分利用及干物质生产的影响. 兰州:甘肃农业大学, 2012.
[38] 胡芬, 陈尚谟 . 旱地玉米农田地膜覆盖的水分调控效应研究. 中国农业气象, 2000,21(4):14-17.
[39] 柳玉凤, 谢英荷, 李廷亮 , 等. 地膜覆盖对旱地作物产量及土壤水分影响的研究概述. 山西农业科学, 2018,46(3):461-465.
[40] 王雷 . 岷江上游干旱河谷几种优势灌木的叶水势与抗旱性研究. 成都:四川师范大学, 2018.
[41] He G, Wang Z H, Gao H B , et al. Year-round plastic film mulch to increase wheat yield and economic returns while reducing environmental risk in dry land of the Loess Plateau. Field Crops Research, 2018,225(8):1-8.
[42] Luo L C, Wang Z H, Huang M , et al. Plastic film mulch increased winter wheat grain yield but reduced its protein content in dryland of northwest China. Field Crops Research, 2018,218(4):69-77.
[1] 严华,晏中文,雷杰. 新源县1981-2018年气候变化特征及其对春玉米的影响[J]. 作物杂志, 2020, (2): 140–146
[2] 申洪涛,张富生,李冬,邱建华,蔡兴宏,秦玉宝. 不同前茬和种植密度对牡丹江烤烟生长及产质量的影响[J]. 作物杂志, 2020, (2): 105–111
[3] 王天文,李长忠,陈广海. 播期和密度对马铃薯原种扩繁生长发育及产量的影响[J]. 作物杂志, 2020, (2): 162–167
[4] 李瑞杰,唐会会,王庆燕,许艳丽,房孟颖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利复配剂对东北春玉米光合特性及产量的影响[J]. 作物杂志, 2020, (2): 125–133
[5] 陈迪文,周文灵,敖俊华,黄莹,江永,韩西红,秦益民,沈宏. 海藻提取物对甜玉米产量、品质及氮素利用的影响[J]. 作物杂志, 2020, (2): 134–139
[6] 周伟,崔福柱,段宏凯,郝国花,杨慧,刘芮芮. 播期对糯玉米籽粒产量及品质的影响[J]. 作物杂志, 2020, (2): 156–161
[7] 范业赓,闫海锋,陈荣发,丘立杭,周慧文,黄杏,翁梦苓,吴建明,李杨瑞,韦生满. 甘蔗脱毒种苗第三代种茎不同体积单芽育苗差异及其移栽效果[J]. 作物杂志, 2020, (2): 194–199
[8] 刘卫星,贺群岭,张枫叶,范小玉,陈雷,李可,吴继华. 大粒花生品种区域试验的AMMI模型分析[J]. 作物杂志, 2020, (2): 60–64
[9] 杨志长,沈涛,罗卓,彭芝,胡宇倩,资涛,熊廷浩,宋海星. 低氮密植对机插双季稻产量形成和氮肥利用率的影响[J]. 作物杂志, 2020, (2): 71–81
[10] 黄俊霞,黄甜,饶德民,张鸣浩,孟凡钢,闫晓艳,张伟. 花后水肥一体化与化控措施对大豆产量及生理特征的影响[J]. 作物杂志, 2020, (2): 82–87
[11] 陈天鑫,王艳杰,张燕,常旭虹,陶志强,王德梅,杨玉双,朱英杰,刘阿康,石书兵,赵广才. 不同施氮量对冬小麦光合生理指标及产量的影响[J]. 作物杂志, 2020, (2): 88–96
[12] 高杰,李青风,李晓荣,封广才,彭秋. 贵州不同年代糯高粱品种(系)干物质生产及光能利用特性差异分析[J]. 作物杂志, 2020, (1): 41–46
[13] 荆培培,任红茹,杨洪建,戴其根. 盐胁迫对2个不同盐敏感性水稻品种(系)叶片光合特性与产量的影响[J]. 作物杂志, 2020, (1): 67–75
[14] 黄寅玲,雷忠顺,郑涛,索新霞. 不同施氮量对冬小麦产量、效益及土壤理化性状的影响[J]. 作物杂志, 2020, (1): 130–135
[15] 张永强,齐晓晓,张璐,董慧云,陈传信,赛力汗·赛,薛丽华,陈兴武,雷钧杰. 氮肥运筹对滴灌冬小麦叶片光合特性及产量的影响[J]. 作物杂志, 2020, (1): 141–145
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 侯乾,王万兴,李广存,熊兴耀. 马铃薯连作障碍研究进展[J]. 作物杂志, 2019, (6): 1 –7 .
[2] 张婷,逯腊虎,杨斌,袁凯,张伟,史晓芳. 黄淮麦区4省小麦种质农艺性状的比较分析[J]. 作物杂志, 2019, (6): 20 –26 .
[3] 孙悦,刘斌,傅漫琪,王婧,王小慧,陈阜. 1985-2015年我国胡麻子生产时空动态变化[J]. 作物杂志, 2019, (6): 8 –13 .
[4] 朱安,高捷,黄健,汪浩,陈云,刘立军. 水稻根系形态生理及其与稻米品质关系的研究进展[J]. 作物杂志, 2020, (2): 1 –8 .
[5] 张新,曹丽茹,魏良明,张前进,周柯,王振华,鲁晓民. 玉米葡萄糖转运蛋白基因ZmGLUT-1表达特征分析及互作预测[J]. 作物杂志, 2020, (1): 22 –28 .
[6] 潘磊,许杰,杨帅,陈云松,陈连红,马文广. 不同贮藏温度条件下3个烟草品种花粉活力、形态及生理指标变化[J]. 作物杂志, 2020, (2): 112 –118 .
[7] 严华,晏中文,雷杰. 新源县1981-2018年气候变化特征及其对春玉米的影响[J]. 作物杂志, 2020, (2): 140 –146 .
[8] 江洋,汪金平,曹凑贵. 稻田种养绿色发展技术[J]. 作物杂志, 2020, (2): 200 –204 .
[9] 马卉,焦小雨,许学,李娟,倪大虎,许蓉芳,王钰,汪秀峰. 水稻重金属镉代谢的生理和分子机制研究进展[J]. 作物杂志, 2020, (1): 1 –8 .
[10] 王梅春,连荣芳,肖贵,墨金萍,曹宁. 我国小扁豆研究综述及产业发展对策[J]. 作物杂志, 2020, (1): 13 –16 .