作物杂志,2021, 第1期: 160–167 doi: 10.16035/j.issn.1001-7283.2021.01.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

马铃薯叶型和种植密度对产量组分的影响

段惠敏1(), 卢潇1(), 周晓洁1, 李高峰2, 文国宏2, 王玉萍1, 程李香1, 张峰1()   

  1. 1甘肃农业大学农学院/甘肃省干旱生境作物学国家重点实验室培育基地/甘肃省遗传改良与种质创新重点实验室,730070,甘肃兰州
    2甘肃省农业科学院马铃薯研究所,730070,甘肃兰州
  • 收稿日期:2020-04-06 修回日期:2020-04-30 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 张峰
  • 作者简介:段惠敏,主要从事马铃薯遗传育种研究,E-mail: 1273475789@qq.com|卢潇为共同第一作者,主要从事马铃薯育种研究,E-mail: 827983642@qq.com
  • 基金资助:
    国家重点研发计划(2017YFD0101905);甘肃省农业发展项目(GNKJ-2020-1)

Effects of Potato Leaf Type and Planting Density on Yield Components

Duan Huimin1(), Lu Xiao1(), Zhou Xiaojie1, Li Gaofeng2, Wen Guohong2, Wang Yuping1, Cheng Lixiang1, Zhang Feng1()   

  1. 1Agronomy College, Gansu Agricultural University/Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, Gansu, China
    2Institute of Potato, Gansu Acadamy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2020-04-06 Revised:2020-04-30 Online:2021-02-15 Published:2021-02-23
  • Contact: Zhang Feng

摘要:

最佳种植密度有利于对不同叶型马铃薯品种的田间管理,而且在高产同时可以获得最佳产量组分。为研究马铃薯叶型和种植密度的相互关系,找到不同叶型品种的最佳种植密度,选取株型直立的中晚熟代表品种Atlantic(叶上冲型)和甘农薯7号(叶平展型),固定行距70cm,设置30、25、20、15和10cm 5个株距,测定了植株性状、叶绿素荧光参数和块茎产量组分,并分析了不同种植密度下2个品种性状差异以及植株性状和产量组分之间的相关性。田间鉴定表明,随着种植密度的增加,2个品种的株高、节间距、披垂度和叶面积指数增加,茎粗、垂角和叶夹角降低,光合系统Ⅱ最大光化学效率Fv/Fm增加,但实际光化学效率ΦPSII降低。相对于叶上冲型品种Atlantic,叶平展型品种甘农薯7号披垂值显著增加。株距为15~30cm时,2个品种种植密度的提高均可以显著增加单株产量、单株结薯数和小区产量。结果表明,叶平展型品种甘农薯7号在株距25cm、叶上冲型品种Atlantic在株距20cm时,植株冠层结构分布最佳,商品薯率和小区产量较高,为最适种植密度。

关键词: 马铃薯, 植株性状, 叶型, 种植密度, 产量组分

Abstract:

The optimum planting density is not only beneficial to the field management of potato varieties with different leaf types, but also beneficial to the optimum yield components. In order to obtain the optimal planting density of potato varieties with different leaf types, the relationship between leaf type and planting density was studied. Two typical middle-late erect type potato varieties, Atlantic (uprush-leaf) and Gannongshu 7 (spreading-leaf) were used as materials. Five plant spacing (30, 25, 20, 15 and 10cm) and fixed row spacing (70cm) were set in the experiment. The indexes of plant architecture traits, fluorescence parameters and yield components of two varieties were investigated. In addition, the correlations between plant architecture traits and the yield components under different plant spacings were determined and analyzed. The field experiment showed that, with the increasing of plant spacing, the plant height, plant internode length, leaf bend degree, leaf area index, and the maximum photochemical efficiency of PSⅡ (Fv/Fm) increased, while the stem diameter, leaf drooping angle, leaf angle, and the actual photochemical efficiency of PSⅡ (ΦPSⅡ) decreased. Compared with Atlantic, the leaf bend degree of Gannongshu 7 increased significantly. Within the specific plant spacing ranging from 15 to 30cm, increasing plant spacing could significantly increase the yield per plant, tuber number per plant and plot yield. These results indicated that the optimal planting spacing was 25 and 20cm for spreading-leaf variety (Gannongshu 7) and uprush-leaf type variety (Atlantic), respectively, which had the reasonable canopy structure, the higher commodity rate and plot yield.

Key words: Potato, Plant traits, Leaf type, Plant spacing, Yield component

图1

不同株距下两种叶型马铃薯品种的株高、茎粗和节间距 不同小写字母代表不同株距间差异达0.05显著水平。下同

图2

不同株距两种叶型马铃薯品种的垂角和披垂度

图3

不同株距两种叶型马铃薯品种的叶夹角和叶面积指数

图4

不同株距下两种叶型马铃薯品种叶绿素荧光动力学参数

图5

不同株距下两种叶型马铃薯品种的单株结薯数、单株产量、小区产量、商品薯产量以及商品薯率

表1

马铃薯叶上冲型品种Atlantic植株性状与产量组分相关性分析

性状
Characteristic
株高
Plant height
(cm)
茎粗
Stem diameter (mm)
节间距
Internodes length
(cm)
垂角
Drooping angle
(°)
披垂度
Bend degree
(°)
叶夹角
Leaf angle
(°)
叶面积指数
Leaf area
index
单株结薯数Tuber number per plant -0.868* -0.595 -0.433 -0.306 -0.369 -0.637 -0.525
单株产量Yield per plant (kg) -0.971** -0.749 -0.554 -0.463 -0.437 -0.786 -0.721
小区产量Plot yield (kg) -0.972** -0.866* -0.633* -0.641 -0.481 -0.892* -0.833*
商品薯产量Marketable yield (kg) -0.537 -0.708 -0.462 -0.712* -0.335 -0.705 -0.574
商品薯率Commodity tuber rate (%) -0.877* -0.607 -0.522 -0.310 -0.440 -0.643 -0.654

表2

马铃薯叶平展型品种甘农薯7号植株性状与产量组分相关性分析

性状
Characteristic
株高
Plant height
(cm)
茎粗
Stem diameter (mm)
节间距
Internodes length
(cm)
垂角
Drooping angle
(°)
披垂度
Bend degree
(°)
叶夹角
Leaf angle
(°)
叶面积指数
Leaf area
index
单株结薯数Tuber number per plant -0.715 -0.545 -0.365 -0.624 -0.208 -0.538 -0.695
单株产量Yield per plant (kg) -0.456 -0.231 0.005 -0.295 -0.082 -0.287 -0.632
小区产量Plot yield (kg) -0.879* -0.893* 0.807 -0.846* -0.674 -0.845* -0.735
商品薯产量Marketable yield (kg) -0.992** -0.951* 0.795 -0.928* -0.514 -0.960** -0.890*
商品薯率Commodity tuber rate (%) -0.494 -0.664 0.767 -0.590 -0.720 -0.559 -0.205
[1] 周晓洁. 马铃薯植株表型数据分析和株型研究. 兰州:甘肃农业大学, 2016.
[2] Iritani W M, Thornton R, Weller L, et al. Relationships of seed size,spacing,stem numbers to yield of Russet Burbank potatoes. American Journal of Potato Research, 1972,49(12):463-469.
[3] Entz M H, LaCroix L J. The effect of in-row spacing and seedtype on the yield and quality of a potato cultivar. American Journal of Potato Research, 1984,61(2):93-105.
[4] Bussan A J, Mitchell P D, Copas M E, et al. Evaluation of the effect of density on potato yield and tuber size distribution. Crop Science, 2007,47(6):2462-2472.
[5] Rosati A, Badeck F W, Dejong T M. Estimating canopy light interception and absorption using leaf mass per unit leaf area in Solanum melongena. Annals of Botany, 2001,88(1):101-109.
[6] Sarlikiot V, De Visser P H, Marcelis L F. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model. Annals of Botany, 2011,107(5):875-883.
doi: 10.1093/aob/mcr006 pmid: 21355008
[7] Vasilyev A A. Dependence of the yield and quality of potato tubers in the forest-steppe zone of Southern Urals on the level of mineral nutrition and planting density. Russian Agricultural Sciences, 2015,40(6):422-425.
[8] Blauer J M, Knowles L O, Knowles N R. Manipulating stem number,tuber set and size distribution in specialty potato cultivars. American Journal of Potato Research, 2013,90(5):470-496.
doi: 10.1007/s12230-013-9317-0
[9] 冯辉, 王五宏, 徐娜, 等. 串番茄主要株型性状的遗传研究. 中国农业科学, 2008,41(12):4134-4139.
[10] Takenaka A. Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecological Research, 1994,9(2):109-114.
doi: 10.1007/BF02347485
[11] Bohl W H, Star J C, Mcintosh C S. Potato seed piece size,spacing,and seeding rate effects on yield,quality and economic return. American Journal of Potato Research, 2011,88(6):470-478.
doi: 10.1007/s12230-011-9213-4
[12] Creamer N G, Crozier C R, Cubeta M A. Influence of seed piece spacing and population on yield,internal quality,and economic performance of Atlantic,Superior,and Snowden potato varieties in Eastern North Carolina. American Journal of Potato Research, 1999,76(5):257-261.
doi: 10.1007/BF02853623
[13] 黄承建, 赵思毅, 王龙昌, 等. 马铃薯/玉米套作对马铃薯品种光合特性及产量的影响. 作物学报, 2013,39(2):330-342.
doi: 10.3724/SP.J.1006.2013.00330
[14] Lynch D R, Rowberry R G. Population density studies with Russet Burbank II. The effect of fertilization and plant density on growth,development and yield. American Journal of Potato Research, 1977,54(2):57-71.
[15] Jefferies R A. Drought and chlorophyll fluorescence in field-grown potato (Solanum tuberosum). Physiologia Plantarum, 2006,90(1):93-97.
[16] Knowles N R, Knowles L O. Manipulating stem number,tuber set,and yield relationships for Northern- and Southern-Grown potato seed lots. Crop Science, 2006,46(1):284-296.
doi: 10.2135/cropsci2005.05-0078
[17] Imma F, Angel M M. Potato minituber production using aeroponics:effect of plant density and harvesting intervals. American Journal of Potato Research, 2006,83(1):47-53.
doi: 10.1007/BF02869609
[18] Conley S P, Binning L K, Connell T R. Effect of cultivar,row spacing,and weed management on weed biomass,potato yield,and net crop value. American Journal of Potato Research, 2001,78(1):31-37.
doi: 10.1007/BF02874822
[19] Forcella F, Westgate M E, Warnes D D. Effect of row width on herbicide and cultivation requirements in row crops. American Journal of Alternative Agriculture, 1992,7(4):161-167.
[20] Maddonni G A, Otegui M E, Cirilo A G. Plant population density,row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Research, 2001,71(3):183-193.
[21] 宋伟, 赵长星, 王月福, 等. 不同种植方式对花生田间小气候效应和产量的影响. 生态学报, 2011,31(23):7188-7195.
[22] Soratto R P, Souzaschlick G D, Fernandes A M, et al. Narrow row spacing and high plant population to short height castor genotypes in two cropping seasons. Industrial Crops and Products, 2012,35(1):244-249.
doi: 10.1016/j.indcrop.2011.07.006
[23] Jacob M B, Lisa O K, Richard K N. Manipulating stem number,tuber set and size distribution in specialty potato cultivars. American Journal of Potato Research. 2013,90(5):470-496.
doi: 10.1007/s12230-013-9317-0
[24] Seijo-Rodriguez A, Escuredo O, Rodriguez-Flores M S, et al. Morphological characteristics of Solanum tuberosum varieties cultivated in north-west Spain. American journal of Potato Research. 2017,94:26-37.
[25] Engels C, Bedewy R E, Sattelmacher B. Effects of weight and planting density of tubers derived from true potato seed on growth and yield of potato crops in Egypt. 1. Sprout growth,field emergence and haulm development. Field Crops Research, 1993,35(3):159-170.
[26] Sipos J, Prange R K. Response of ten potato cultivars to temperature as measured by chlorophyll fluorescence in vivo. American Journal of Potato Research, 1986,63(12):683-694.
[27] Jefferies R A. Effects of drought on chlorophyll fluorescence in potato (Solanum tuberosum L.). II. Relations between plant growth and measurements of fluorescence. Potato Research, 1992,35(1):35-40.
[28] Engels C, Bedewy R E, Sattelmacher B. Effects of weight and planting density of tubers derived from true potato seed on growth and yield of potato crops in Egypt. 2. Tuber yield and tuber size. Field Crops Research, 1993,35(3):171-182.
[29] Caliskan M E. Effects of plant density on the yield and yield components of true potato seed (TPS) hybrids in early and main crop potato production systems. Field Crops Research, 2009,114(2):223-232.
[30] Robert M, Upenyu M, Tuarira A M, et al. Growth,yield and quality responses to plant spacing in potato (Solanum tuberosum) varieties. African Journal of Agricultural Research, 2015,10(6):571-578.
[31] 姚玉璧, 王润元, 邓振镛, 等. 黄土高原半干旱区气候变化及其对马铃薯生长发育的影响. 应用生态学报, 2010,21(2):379-385.
[32] Wiersema S G. The effect of density on tuber yield in plants grown from true potato seed in seed beds during two contrasting seasons. American Journal of Potato Research, 1986,63(9):465-472.
[33] Knowles L O, Knowles N R. Optimizing tuber set and size distribution for potato seed (Solanum tuberosum L.) expressing varying degrees of apical dominance. Journal of Plant Growth Regulation, 2016,35(2):574-585.
[1] 杨平, 陈昱利, 巩法江, 毕海滨, 高明慧. 马铃薯块茎膨大特性及其与单薯鲜重之间的相关性[J]. 作物杂志, 2021, (2): 130–134
[2] 李洁, 张小宁, 晋凡生, 韩彦龙, 李海金. 干旱年景下芸豆生长及产量对其密度的响应[J]. 作物杂志, 2021, (2): 140–146
[3] 邱甜, 牛力立, 朱江, 蔡甫格, 王庆伟. 3种生长调节剂对马铃薯试管苗生长的影响[J]. 作物杂志, 2021, (2): 160–164
[4] 刘佳敏, 汪洋, 褚旭, 齐欣, 王慢慢, 赵亚南, 叶优良, 黄玉芳. 种植密度和施氮量对小麦-玉米轮作体系下周年产量及氮肥利用率的影响[J]. 作物杂志, 2021, (1): 143–149
[5] 刘振兴, 周桂梅, 亚秀秀, 陈健, 孟庆祥, 何国庆. 不同种植密度对3个小豆品种植株形态及产量的影响[J]. 作物杂志, 2020, (6): 137–142
[6] 杨云马, 杨军芳, 贾良良, 邢素丽, 樊建英, 封志明, 张淑青, 相丛超, 黄少辉, 刘学彤. 河北二季作春播马铃薯养分吸收规律及肥料适宜用量[J]. 作物杂志, 2020, (6): 170–174
[7] 秦鸿德, 荣义华, 黄晓莉, 胡爱兵, 周家华, 闫显会, 李蔚, 张贤红, 李洪菊, 杨国正. 简化施肥夏直播棉对密度和氮肥的响应[J]. 作物杂志, 2020, (4): 127–134
[8] 缪平贵, 于显枫, 张绪成, 方彦杰, 侯慧芝, 王红丽, 马一凡, 窦学诚. 立式深旋耕作对马铃薯农田土壤温室气体排放的影响[J]. 作物杂志, 2020, (3): 109–116
[9] 何万春, 黄凯, 令鹏, 陈子雄, 王景才, 潘晓春, 张娟宁, 李鹏程. 不同有机肥氮替代化肥氮比例对马铃薯根系吸收能力和形态的影响[J]. 作物杂志, 2020, (3): 132–136
[10] 柴芳梅, 高甜甜, 柴守玺, 程宏波, 宋亚丽, 鲁清林. 种植密度对甘肃不同生态区小麦产量形成的影响[J]. 作物杂志, 2020, (3): 154–160
[11] 陈娟, 贺锦红, 刘吉利, 康建宏, 吴娜. 半干旱区不同种植模式对马铃薯淀粉形成及产量的影响[J]. 作物杂志, 2020, (3): 169–176
[12] 郝凯, 贾立国, 秦永林, 樊明寿. 氮素对马铃薯源-库关系影响研究进展[J]. 作物杂志, 2020, (3): 22–26
[13] 邱彩玲, 范国权, 申宇, 高艳玲, 张威, 韩树鑫, 张抒, 董学志, 马纪, 白艳菊. 马铃薯纺锤块茎类病毒RT-qPCR检测技术体系的建立[J]. 作物杂志, 2020, (3): 79–84
[14] 申洪涛,张富生,李冬,邱建华,蔡兴宏,秦玉宝. 不同前茬和种植密度对牡丹江烤烟生长及产质量的影响[J]. 作物杂志, 2020, (2): 105–111
[15] 王天文,李长忠,陈广海. 播期和密度对马铃薯原种扩繁生长发育及产量的影响[J]. 作物杂志, 2020, (2): 162–167
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[2] 柴莹,徐永清,付瑶,李秀钰,贺付蒙,韩英琦,冯哲,李凤兰. 马铃薯干腐病病原镰孢菌体内产细胞壁降解酶特性研究[J]. 作物杂志, 2018, (4): 154 –160 .
[3] 刘亚军,胡启国,储凤丽,王文静,杨爱梅. 不同栽培方式和种植密度对“商薯9号”产量及结薯习性的影响[J]. 作物杂志, 2018, (4): 89 –94 .
[4] 袁珍贵,陈平平,郭莉莉,屠乃美,易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异[J]. 作物杂志, 2018, (1): 107 –112 .
[5] 赵璐,杨治伟,部丽群,田玲,苏梅,田蕾,张银霞,杨淑琴,李培富. 宁夏和新疆水稻种质资源表型遗传多样性分析及综合评价[J]. 作物杂志, 2018, (1): 25 –34 .
[6] 陆姗姗,吴承来,李岩,张春庆. 玉米自交系性状保持和纯化的分子依据[J]. 作物杂志, 2018, (1): 41 –48 .
[7] 耿雷跃,张薇,邹拓,郑振宇,耿立格,孙娟,张启星. 河北水稻地方种质品质多样性分析[J]. 作物杂志, 2018, (1): 49 –55 .
[8] 李耀燕,:裴艳艳,:黄珊艳,:张英燕,:韦松基,:谢阳姣,:周琼. 瑶药肿瘤藤(星毛冠盖藤)的生药学研究[J]. 作物杂志, 2018, (1): 61 –65 .
[9] 欧阳主才, 陈家来, 方青, 等. 国审超甜玉米华宝甜1号的特征特性与高效栽培关键技术[J]. 作物杂志, 2008, (2): 93 –94 .
[10] 石明辉, 杨国华, 杨文霞, 等. 粮饲兼用玉米新杂交种酒试20选育报告[J]. 作物杂志, 2008, (1): 93 –94 .