作物杂志,2023, 第1期: 136–142 doi: 10.16035/j.issn.1001-7283.2023.01.020

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

幼龄核桃林下带状复合间作对大豆生长及产量的影响

赵晶云(), 吕新云, 刘小荣, 任海红, 任小俊, 马俊奎()   

  1. 山西农业大学经济作物研究所,032200,山西汾阳
  • 收稿日期:2021-10-08 修回日期:2022-01-22 出版日期:2023-02-15 发布日期:2023-02-22
  • 通讯作者: 马俊奎,主要从事大豆栽培育种研究,E-mail:Mjk_18@163.com
  • 作者简介:赵晶云,主要从事大豆栽培育种研究,E-mail:zhaojyw@126.com
  • 基金资助:
    山西农业大学科研项目(YZGC044);山西省农业科学院创新项目(YCX2020102);吕梁市重点研发项目(2020NYGG81)

Effects of Strip Compound Intercropping under Young Walnut Forest on Soybean Growth and Yield

Zhao Jingyun(), Lü Xinyun, Liu Xiaorong, Ren Haihong, Ren Xiaojun, Ma Junkui()   

  1. The Industrial Crop Institute, Shanxi Agricultural University, Fenyang 032200, Shanxi, China
  • Received:2021-10-08 Revised:2022-01-22 Online:2023-02-15 Published:2023-02-22

摘要:

为探明幼龄核桃林下复合间作的大豆生长变化及营养特性,以6个大豆品种为试验材料,在5年生的幼龄核桃林下进行带状复合间作,同时单作为对照,记载各品种的生长特性,并测量不同生育期的干物质积累量和成熟后籽粒的蛋白质、脂肪含量及籽粒产量。结果表明,核桃林下带状复合间作大豆生育期延长4~8d,抗倒性降低;株高和底荚高度增加,分枝数减少,主茎节数变化不显著;干物质积累量在各生长阶段均比单作有所降低,苗期和花期影响不显著,鼓粒期和成熟期影响显著;粗蛋白含量比单作有所增加,增加量因品种不同而异,晋豆42的粗蛋白含量显著提高;脂肪含量均比单作降低,晋豆42显著降低;籽粒产量比单作降低显著,生育期最长、株高最高且倒伏的汾豆93减产最多,为59.03%,生育期短的晋豆25减产最少,为49.04%。6个品种中,汾豆78在间作模式下产量最高,为1617.5kg/hm2,其次是汾豆56,为1481.5kg/hm2。幼龄核桃林下复合间作大豆,会延缓成熟,使株高增加,分枝数减少,干物质积累量降低,粗蛋白质含量增加,粗脂肪含量降低,大豆产量显著降低。

关键词: 带状复合间作, 大豆, 幼龄核桃林, 产量

Abstract:

In order to find out the growth change and nutritional characteristics of soybean varieties intercropped under young walnut forest, six soybean varieties were used as material for strip intercropping under 5-year young walnut forest. At the same time, the growth characteristics of each variety were recorded by single comparison, and the dry matter accumulation of each variety at different growth stages, the protein and fat content and grain yield of mature seeds were measured. The results showed that the growth period of soybean was prolonged by 4-8 days and the lodging resistance was reduced by strip intercropping soybean under walnut forest. With the increase of plant height and pod height, the number of branches decreased, but the number of main stem nodes did not change significantly. Dry matter accumulation in each growth stage was lower than that of monoculture, and the effects at seedling stage and flowering stage were not significant, but the effects at grain filling stage and mature stage were significant. The crude protein content of Jindou 42 was higher than that of monoculture, and the increasing amount was different. The fat content was lower than that of monoculture, and Jindou 42 was significantly lower. Grain yield was significantly lower than that of monoculture. Fendou 93 had the longest growth period, the highest plant height and lodging, and had the most yield reduction of 59.03%, while Jindou 25 with a short growth period had the least yield reduction of 49.04%. Among the six varieties, Fendou 78 had the highest yield with 1617.5kg/ha in intercropping pattern, followed by Fendou 56 (1481.5kg/ha). Intercropping soybean under young walnut forest would delay the maturity of soybean, increase plant height, decrease branch number and dry matter accumulation, increase crude protein content, decrease crude fat content and significantly decrease soybean yield.

Key words: Compound strip intercropping, Soybean, Young walnut forest, Yield

表1

大豆品种生育期及倒伏性

品种
Variety
生育期Growth period (d) 倒伏性Lodging property
单作模式Monoculture 复合间作Compound intercropping 单作模式Monoculture 复合间作Compound intercropping
汾豆78 Fendou 78 137 142 不倒 不倒
晋豆19 Jindou 19 122 127 不倒 不倒
晋豆42 Jindou 42 135 140 不倒 不倒
晋豆25 Jindou 25 112 116 不倒 不倒
汾豆56 Fendou 56 138 144 不倒 不倒
汾豆93 Fendou 93 138 146 不倒 中倒

表2

种植模式对大豆品种农艺性状的影响

种植模式
Planting pattern
品种
Variety
株高
Plant height (cm)
底荚高度
Height of bottom pod (cm)
有效分枝数
Number of effective branch
主茎节数
Number of main stem nodes
单作模式Monoculture 汾豆78 116.70±0.61d 12.47±1.14d 2.07±0.07a 21.27±0.24a
晋豆19 112.47±0.43e 8.87±0.82ef 2.20±0.12a 15.67±0.27c
晋豆42 94.47±0.48h 7.60±0.46fg 2.07±0.18a 15.60±0.50c
晋豆25 84.13±0.88j 5.20±0.20h 2.20±0.12a 12.47±0.37d
汾豆56 107.97±1.32f 7.67±0.47fg 2.07±0.13a 15.73±0.18c
汾豆93 136.77±1.29b 20.00±0.61b 1.93±0.07a 20.80±0.72ab
复合间作Compound intercropping 汾豆78 122.30±0.25c 15.67±0.58c 1.07±0.07bc 20.07±0.77ab
晋豆19 117.67±0.84d 10.53±0.41e 1.33±0.07b 15.13±0.27c
晋豆42 98.83±0.37g 8.73±0.35ef 1.33±0.07b 15.00±0.20c
晋豆25 87.63±0.72i 6.00±0.31gh 1.13±0.07bc 11.27±0.47d
汾豆56 111.63±0.62e 9.60±0.53e 1.27±0.07bc 15.53±0.13c
汾豆93 142.07±0.88a 22.47±0.58a 1.00±0.12c 19.73±0.29b

表3

种植模式对大豆品种干物质积累量的影响

种植模式
Planting pattern
品种
Variety
苗期
Seedling stage
盛花期
Blooming period
鼓粒期
Grain bulging stage
成熟期
Mature period
单作模式Monoculture 汾豆78 5.43±0.20abc 13.37±0.09bcd 22.27±0.23b 25.83±0.33b
晋豆19 5.43±0.12abc 12.83±0.20cdef 17.33±0.32e 20.30±0.32e
晋豆42 5.57±0.03abc 12.70±0.06def 18.60±0.32d 21.83±0.38d
晋豆25 5.40±0.10abc 12.03±0.48efg 16.5±0.35ef 17.50±0.44f
汾豆56 5.77±0.20ab 13.83±0.23ab 22.93±0.48b 23.90±0.61c
汾豆93 5.90±0.10a 14.70±0.26a 25.83±0.38a 29.10±0.35a
复合间作Compound intercropping 汾豆78 5.30±0.12bc 12.17±0.29cdef 20.63±0.66c 24.53±0.03c
晋豆19 5.13±0.22c 11.87±0.23fg 15.87±0.17f 17.33±0.69f
晋豆42 5.40±0.06abc 12.10±0.26efg 17.07±0.38ef 19.97±0.42e
晋豆25 5.03±0.27c 11.30±0.49g 14.27±0.29g 16.03±0.70g
汾豆56 5.33±0.19bc 12.93±0.44bcde 19.23±0.75d 21.17±0.26de
汾豆93 5.77±0.17ab 13.73±0.23bc 22.10±0.35b 23.77±0.03c

图1

不同种植模式对大豆粗蛋白含量的影响 不同字母表示差异达到显著水平(P < 0.05),下同

图2

不同种植模式对大豆脂肪含量的影响

图3

幼龄核桃林下间作大豆品种的产量表现

[1] 石天磊, 李晓颍, 左波, 等. 8份核桃资源坚果主要香气物质分析. 果树学报, 2020, 37(7):1016-1024.
[2] 赵见军, 王丁丁, 张亮, 等. 我国核桃综合利用与发展前景. 陕西农业科学, 2014, 60(4):56-59,73.
[3] Li L, Li S M, Sun J H, et al. Diversity enhances agricultural productivi-ty via rhizosphere phosphorus facilitation on phosphorus- deficient soils. Proceedings of the National Academy of Science, 2007, 104(27):11192-11196.
[4] 刘小荣, 马俊奎, 刘学义. 大豆玉米“扩行增密”带状复种技术在山西应用初探. 大豆科学, 2017, 36(5):720-726.
[5] 王竹, 杨文钰, 伍晓燕, 等. 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响. 应用生态学报, 2008, 19(2):323-329.
[6] 崔亮, 杨文钰, 黄妮, 等. 玉米―大豆带状套作下玉米株型对大豆干物质积累和产量形成的影响. 应用生态学报, 2015, 26(8):2414-2420.
[7] 庞婷, 帅鹏, 陈平, 等. 不同结瘤品种和行间距对套作大豆根瘤生长及物质积累与分配的影响. 浙江大学学报(农业与生命科学版), 2017, 43(4):451-461.
[8] 杨文钰, 雍太文, 任万军, 等. 发展套作大豆,振兴大豆产业. 大豆科学, 2008, 27(1):1-7.
[9] 程鹏, 曹福亮, 汪贵斌. 农林复合经营的研究进展. 南京林业大学学报(自然科学版), 2010, 34(3):15-156.
[10] 唐夫凯, 齐丹卉, 卢琦, 等. 中国西北地区农林复合经营的保护与发展. 自然资源学报, 2016, 31(9):1429-1439.
[11] 卢良恕. 中国立体农业模式. 郑州: 河南科学技术出版社, 1993:32-33.
[12] 刘巽浩, 牟正国. 中国耕作制度. 北京: 中国农业出版社, 1993:151-159.
[13] 苏本营, 陈圣宾, 李永庚, 等. 间套作种植提升农田生态系统服务功能. 生态学报, 2013, 33(14):4505-4514.
[14] 赵思毅, 魏刚, 徐建俊, 等. 间套作生态控制病、虫、草害研究进展. 中国麻业科学, 2014, 36(6):275-279.
[15] 苏本营, 宋艳霞, 陈圣宾, 等. 大豆幼苗对套作玉米遮荫环境的光合生理生态响应. 生态学报, 2015, 35(10):3298-3308.
[16] Szumigalski A R, Van Acker R C, et al. Nitrogen yield and land use efficiency in annual sole crops and intercrops. Agronomy Journal, 2006, 98(4):1030-1040.
doi: 10.2134/agronj2005.0277
[17] Willey R W. Resource use in intercropping systems. Agricultural Water Management, 1990, 17:215-231.
doi: 10.1016/0378-3774(90)90069-B
[18] Zhang G G, Yang Z B, Dong S T. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Research, 2011, 124(1):66-73.
doi: 10.1016/j.fcr.2011.06.006
[19] 朱佳敏. 核桃林下套种研究进展. 四川农业科技, 2019(6):77-78.
[20] 权宝全, 白冬梅, 田跃霞, 等. 核桃林间作不同种植行的花生生长差异研究. 河南农业科学, 2019, 48(12):51-55.
[21] 邱丽娟, 常汝镇. 大豆种植资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
[22] 李初英, 孙祖东, 陈怀珠, 等. 不同遮光胁迫对大豆生长发育进程及形态性状的影响. 中国农学通报, 2006, 22(9):170-173.
[23] Teruhisa U, Tomohiko Y. Effects of shading on the internode elongation of late maturing soybean. Journal of the Faculty of Agriculture,Kyushu University, 1992, 36:267-272.
doi: 10.5109/23989
[24] Maddonni G A, Otegui M E, Cirilo A G. Plant population density,row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Research, 2001(71):183-193.
[25] 程亚娇, 谌俊旭, 王仲林, 等. 光强和光质对大豆幼苗形态及光合特性的影响. 中国农业科学, 2018, 51(14):2655-2663.
[26] 杨錦, 杨欢, 涂娅欣. 套作大豆共生后期弯曲力学特性的研究. 上海农业学报, 2018, 34(1):25-29.
[27] 王贝贝, 范元芳, 王仲林, 等. 玉米大豆行比配置对套作大豆生长、物质分配及系统产量的影响. 四川农业大学学报, 2019, 37(3):308-313.
[28] Yang F, Huang S, Gao R, et al. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Research, 2014, 155(12):245-253.
doi: 10.1016/j.fcr.2013.08.011
[29] 刘卫国, 蒋涛, 佘跃辉, 等. 大豆苗期茎秆对荫蔽胁迫响应的生理机制初探. 中国油料作物学报, 2011, 33(2):141-146.
[30] 王一, 杨文钰, 张霞, 等. 不同生育时期遮阴对大豆形态性状和产量的影响. 作物学报, 2013, 39(10):1871-1879.
doi: 10.3724/SP.J.1006.2013.01871
[31] 罗玲, 于晓波, 万燕, 等. 套作大豆苗期倒伏与茎秆内源赤霉素代谢的关系. 中国农业科学, 2015, 48(13):2528-2537.
[32] Martin R C, Astatkie T, Cooper J M. The effect of Bradyrhizobium strains on monocropped and intercropped soybean (Glycine max L. Merr.) biomass and protein. Journal of Agronomy and Crop Science, 1998, 181(1):1-6.
doi: 10.1111/j.1439-037X.1998.tb00390.x
[33] Carr P M, Martin G B, Caton J S, et al. Forage and nitrogen yield of barley-pea and oat-pea intercrops. Agronomy Journal, 1998, 90(1):79-84.
doi: 10.2134/agronj1998.00021962009000010015x
[34] Kingsley K A, Daniel H P, Carroll P V, et al. Strip intercropping and nitrogen effects on seed,oil,and protein yields of canola and soybean. Agronomy Journal, 1997, 89:23-29.
doi: 10.2134/agronj1997.00021962008900010004x
[35] 胡国华, 宁海龙, 王寒冬, 等. 光照强度对大豆产量及品质的影响Ⅰ. 全生育期光照强度变化对大豆脂肪和蛋白质含量的影响. 中国油料作物学报, 2004, 26(2):86-87.
[36] 朱元刚, 高凤菊. 不同间作模式对鲁西北地区玉米―大豆群体光合物质生产特征的影响. 核农学报, 2016, 30(8):1646-1655.
doi: 10.11869/j.issn.100-8551.2016.08.1646
[37] 范元芳, 刘沁林, 王锐, 等. 玉米―大豆带状间作对大豆生长、光合荧光特性及产量的影响. 核农学报, 2017, 31(5):972-978.
doi: 10.11869/j.issn.100-8551.2017.05.0972
[38] 谢甫绨, 董钻, 王晓光. 大豆倒伏对植株性状和产量的影响. 大豆科学, 1993, 12(1):81-85.
[39] 李凤超, 李增嘉. 种植制度的理论与实践. 北京: 中国农业出版社, 1995:139-192.
[40] 薛宪, 王季春, 呂长文, 等. 不同甘薯品种套作玉米下的群体产量及效益分析. 江西农业学报, 2014, 26(10):20-23.
[41] 汪强, 吴延华, 赵莉, 等. 芝麻与花生间作套种增效技术研究. 安徽农业科学, 2011(27):16519-16522.
[42] 吕瑞洲, 薛蔚荣, 吴松松, 等. 种植带与树干距离对间作花生生长发育及产量的影响. 山西农业科学, 2019, 47(12):2115- 2117,2134.
[43] 彭昌家. 麦玉薯带状种植玉米间大豆的配置方式和品种研究. 四川农业大学学报, 1990, 8(3):216-222.
[1] 夏玉莹, 王志君, 李红宇, 胡传军, 吕艳东, 赵海成, 郑桂萍. 育苗方式对寒地水稻秧苗素质、产量及品质的影响[J]. 作物杂志, 2023, (1): 103–108
[2] 高伟, 郝青婷, 张泽燕, 王茜, 闫虎斌, 朱慧珺, 赵雪英, 张耀文. 施氮磷肥对小豆产量、根系形态及光合特性的影响[J]. 作物杂志, 2023, (1): 109–114
[3] 王玉娇, 常旭虹, 王德梅, 王艳杰, 杨玉双, 石书兵, 赵广才. 播种方式对不同品种小麦产量和品质的影响[J]. 作物杂志, 2023, (1): 122–128
[4] 翟彩娇, 张蛟, 崔士友, 陈澎军, 韩继军. 盐逆境下缓/控释肥对水稻生长发育、产量和品质的影响[J]. 作物杂志, 2023, (1): 143–151
[5] 李文姗, 张俊尧, 唐江华, 徐文修, 徐清华. 艾氟迪不同滴施量对棉花生长发育及产量的影响[J]. 作物杂志, 2023, (1): 158–162
[6] 马瑞琦, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 常旭虹. 施氮量对北部冬麦区种植弱筋小麦产量与品质的影响[J]. 作物杂志, 2023, (1): 163–169
[7] 贾峥嵘, 郝佳丽, 郝艳芳, 白文斌, 张建华, 郭瑞锋, 刘勇. 四种芽孢杆菌菌剂对甘薯不同时期产量及品质的影响[J]. 作物杂志, 2023, (1): 170–175
[8] 宿翠翠, 毋玲玲, 赵玺, 施志国, 周彦芳, 魏玉杰. 种植时间对甘肃引黄灌区红花生长发育、品质及产量的影响[J]. 作物杂志, 2023, (1): 176–183
[9] 张丽霞, 郭晓彦, 史鹏飞, 聂良鹏, 凌敬伟, 申培林, 丁丽, 张琳, 吕玉虎, 潘兹亮. 旺长期干旱胁迫对红麻生长发育、产量及效益的影响[J]. 作物杂志, 2023, (1): 184–189
[10] 靳海洋, 张素瑜, 崔静宇, 李向东, 岳俊芹, 张德奇, 杨程, 方保停, 王汉芳, 秦峰. 不同施氮措施对强筋和中强筋小麦品质的调控效应[J]. 作物杂志, 2023, (1): 212–218
[11] 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. 聚天门冬氨酸和壳聚糖复配剂对东北春谷农艺性状、产量及氮素利用的影响[J]. 作物杂志, 2023, (1): 58–67
[12] 阚茗溪, 王艳杰, 于慧玲, 王德梅, 陶志强, 杨玉双, 王玉娇, 高甜甜, 曹祺, 赵广才, 常旭虹. 灌水对节水小麦“衡观35”产量、蛋白质含量及光合性能的影响[J]. 作物杂志, 2023, (1): 68–75
[13] 温蕊, 陈茜午, 赵雅杰, 贾祎明, 卢旭东, 张继宏, 李焕春, 赵沛义, 张永虎. 西北黄土高原旱作区不同地膜覆盖种植模式谷田水温效应及水分利用效率研究[J]. 作物杂志, 2022, (6): 111–117
[14] 熊又升, 熊汉锋, 郭衍龙, 王海生, 刘威, 严与向, 谢媛园, 周剑雄, 杨立军. 减量施肥模式对稻麦轮作体系中小麦产量和养分利用效率的影响[J]. 作物杂志, 2022, (6): 118–123
[15] 杨妍, 徐宁生, 潘哲超, 李燕山, 杨琼芬, 张磊. 多效唑和氮肥对马铃薯产量及经济效益的影响[J]. 作物杂志, 2022, (6): 139–144
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!