作物杂志,2023, 第3期: 205–214 doi: 10.16035/j.issn.1001-7283.2023.03.029

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同生态条件下玉米产量影响因素分析

郭书磊1(), 王瑛2(), 魏良明1, 张新1, 刘焱3, 吴伟华4, 卢道文5, 雷晓兵6, 王振华1(), 鲁晓民1()   

  1. 1河南省农业科学院粮食作物研究所,450002,河南郑州
    2河南省农业科学院农业经济与信息研究所,450002,河南郑州
    3南阳市农业科学院,473000,河南南阳
    4漯河市农业科学院,462000,河南漯河
    5安阳市农业科学院,455000,河南安阳
    6洛阳市农林科学院,471023,河南洛阳
  • 收稿日期:2021-11-08 修回日期:2022-02-18 出版日期:2023-06-15 发布日期:2023-06-16
  • 通讯作者: 王振华,主要从事玉米遗传育种研究,E-mail:wzh201@126.com;鲁晓民为共同通信作者,主要从事玉米遗传育种研究,E-mail:luxiaomin2004@163.com
  • 作者简介:郭书磊,主要从事玉米遗传育种研究,E-mail:Guosl1309@163.com;|王瑛为共同第一作者,主要从事玉米逆境生理和农业经济研究,E-mail:wangying6963444@163.com
  • 基金资助:
    河南省重大科技专项(201300111100);河南省农业科学院自主创新专项(2021ZC14);河南省农业科学院优秀青年科技基金(2020YQ14);河南省农科系统玉米遗传育种协同体

Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions

Guo Shulei1(), Wang Ying2(), Wei Liangming1, Zhang Xin1, Liu Yan3, Wu Weihua4, Lu Daowen5, Lei Xiaobing6, Wang Zhenhua1(), Lu Xiaomin1()   

  1. 1Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Institute of Agricultural Economics and Information, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    3Nanyang Academy of Agricultural Sciences, Nanyang 473000, Henan, China
    4Luohe Academy of Agricultural Sciences, Luohe 462000, Henan, China
    5Anyang Academy of Agricultural Sciences, Anyang 455000, Henan, China
    6Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, Henan, China
  • Received:2021-11-08 Revised:2022-02-18 Online:2023-06-15 Published:2023-06-16

摘要:

不同生态条件下环境因素是导致玉米产量差异的重要原因,为阐明不同地区产量的主要构成因素,利用不同生态区的气候环境以及逆境胁迫压力,对15份自交系和18份杂交种进行评价筛选,分析不同地区产量构成因素对产量的贡献效应,明确不同区域选择适宜高产品种的评价方法。结果表明,与产量直接相关的穗粗、行粒数、穗长、百粒重和穗位系数对产量的贡献效应大于病害和倒伏,在不同气候环境影响下,这些产量因素对产量贡献效应不同;产量最优线性回归模型中引入产量要素越多的地区,产量越高,不同生态环境下,南阳、洛阳、安阳、漯河试验点分别有5、4、4、2个与产量直接相关的因素引入最优线性方程;多地点联合鉴定表明,郑单1868和LX201在干旱胁迫后并未减产,遮阴胁迫后减产相对较少,平均产量相对较高,在本研究的试验材料中综合抗性最好。

关键词: 玉米, 产量要素, 环境因素, 通径分析

Abstract:

The difference of environmental factors under different ecological conditions are important reasons for the difference of maize yield. In order to clarify the main yield components in different regions, 15 inbred lines and 18 hybrids were evaluated and screened by using the climate environment pressure and adversity stress in different ecological areas. Combined with drought and shading stress treatment, and the contribution effects of yield components to yield in different regions were analyzed, the evaluation method of selecting suitable high- yield varieties in different regions was clarified. The results showed that the contribution effects of ear diameter, grain number per row, ear length, 100-grain weight and ear position coefficient directly related to yield were greater than those of disease and lodging, and these yield factors had different contribution and effects on yield under the influence of different climatic environments. The optimal linear regression model of yield were established in different areas with more yield factors, the higher the yield was. There are five, four, four and two factors directly related to yield were introduced into the optimal linear equations in Nanyang, Luoyang, Anyang and Luohe under different ecological environments, respectively. The multi-site joint identification showed that the yields of Zhengdan 1868 and LX201 did not decrease after drought stress, the yields decreased relatively less after shading stress, the average yields were relatively higher, and the comprehensive resistance were better in this study.

Key words: Maize, Yield factor, Environment factor, Path analysis

表1

不同试验点环境因素参数

地点
Location
海拔
Altitude
(m)
有效积温
Effective accumulated
temperature (℃)
降雨量
Rainfall
(mm)
日照时数
Sunshine
hour (h)
日均最高气温
Average daily maximum
temperature (℃)
日均最低气温
Average daily minimum
temperature (℃)
最高气温
Maximum
temperature (℃)
南阳Nanyang 130 3247 493 574 28.20 20.36 37
漯河Luohe 57 3131 453 531 29.25 20.61 39
洛阳Luoyang 136 3003 370 554 27.63 20.30 39
安阳Anyang 67 3073 447 669 28.66 20.17 40

表2

不同性状的多地点方差分析

项目
Item
产量
Yield
百粒重
100-seed weight
穗位系数
Ear position coefficient
穗长
Ear length
穗粗
Ear thickness
穗行数
Ear rows
行粒数
Kernels per row
突尖
Barren ear tip
材料Material 95.25** 40.42** 10.56** 73.92** 39.40** 22.64** 38.76** 29.15**
地点Location 86.67** 186.23** 45.97** 68.77** 181.39** 8.25** 156.89** 64.63**
重复Repeat 0.37 2.51 0.19 0.24 2.36 0.67 0.13 2.73
材料×地点Material×location 56.99** 70.46** 14.03** 114.56** 21.16** 10.39** 105.19** 36.35**

表3

不同材料产量性状的相关系数

指标
Index
产量
Yield
百粒重
100-seed
weight
穗位系数
Ear position
coefficient
穗长
Ear
length
穗粗
Ear
thickness
穗行数
Ear
rows
行粒数
Kernels
per row
秃尖长
Barren ear
tip length
产量Yield 0.306** 0.137 0.400** 0.491** 0.106 0.255** -0.117
百粒重100-seed weight 0.180** -0.104 0.291** 0.141 -0.449** -0.014 0.022
穗位系数Ear position coefficient 0.211** 0.411** 0.213** 0.402** 0.135 0.427** 0.320**
穗长Ear length 0.481** -0.097 0.009 0.478** 0.216** 0.445** 0.169*
穗粗Ear thickness 0.556** 0.640** 0.399** 0.203** 0.419** 0.395** 0.085
穗行数Ear rows -0.063 -0.111 -0.304** -0.070 0.124 0.334** 0.031
行粒数Kernels per row 0.352** -0.232** -0.053 0.701** -0.042 -0.070 0.444**
秃尖长Barren ear tip length 0.159* 0.041 -0.166* 0.191** 0.232** 0.265** -0.135*

表4

不同地点不同材料的产量变化

材料类型
Material type
地点
Location
均值
Mean (kg/hm2)
极小值
Min. (kg/hm2)
极大值
Max. (kg/hm2)
标准偏差
Standard deviation
变异系数
Variation coefficient
偏度
Skewness
峰度
Kurtosis
杂交种Hybrid 南阳 11 690.25 8524.95 14 635.95 94.69 0.12 0.05 0.11
漯河 10 447.95 8673.75 13 675.65 76.65 0.11 0.73 0.35
洛阳 10 818.75 8762.55 12 802.80 72.60 0.10 -0.11 -0.91
安阳 12 248.55 9972.00 14 500.50 74.00 0.09 -0.04 -0.59
自交系Inbred line 南阳 3542.70 1081.95 6920.25 99.51 0.42 0.34 -0.65
漯河 3184.65 1685.25 5278.35 60.16 0.28 0.78 -0.04
洛阳 5351.40 3216.15 7629.75 94.19 0.26 0.32 -1.35
安阳 4371.90 2331.60 7427.85 76.74 0.26 0.58 0.47

表5

4个生态环境下建立的回归模型及回归系数

模型
Model
非标准系数Unstandardized coefficient 标准系数
Standardized coefficient
t P R R2
B 标准误差Standard error
1 常量 -628.775 46.718 -13.459 0.000 0.782 0.611
x3 73.525 2.955 0.782 24.885 0.000
2 常量 -1098.498 55.364 -19.842 0.000 0.847 0.718
x3 43.709 3.508 0.465 12.461 0.000
x4 212.769 17.421 0.456 12.214 0.000
3 常量 -1072.308 53.662 -19.983 0.000 0.859 0.738
x3 29.194 4.308 0.310 6.777 0.000
x4 199.827 16.984 0.428 11.766 0.000
x6 8.661 1.589 0.224 5.450 0.000
4 常量 -1125.673 52.515 -21.435 0.000 0.871 0.758
x3 24.641 4.225 0.262 5.833 0.000
x4 156.826 18.033 0.336 8.697 0.000
x6 10.108 1.551 0.262 6.517 0.000
x1 8.964 1.585 0.177 5.654 0.000
5 常量 -1009.523 59.975 -16.832 0.000 0.875 0.766
x3 22.072 4.208 0.235 5.245 0.000
x4 179.249 18.683 0.384 9.594 0.000
x6 10.895 1.539 0.282 7.079 0.000
x1 8.751 1.560 0.173 5.610 0.000
x2 -462.171 121.42 -0.102 -3.806 0.000

表6

产量性状的偏相关系数

性状
Trait
偏相关系数
Partial correlation coefficient
显著水平
Significant
r(y, x3) 0.782** 0.000
r(y, x4) 0.779** 0.000
r(y, x6) 0.722** 0.000
r(y, x1) 0.578** 0.000
r(y, x2) 0.192** 0.000

表7

南阳试点建立的回归模型及回归系数

模型
Model
非标准系数Unstandardized coefficient 标准系数
Standardized coefficient
t P R R2
B 标准误差Standard error
6 常量 -1234.016 183.585 -6.722 0.000 0.929 0.864
x3 25.937 7.626 0.269 3.401 0.001
x6 25.485 3.628 0.458 7.025 0.000
x1 15.398 4.356 0.220 3.535 0.001
x2 -597.283 195.612 -0.133 -3.053 0.003
x8 -23.957 7.991 -0.123 -2.998 0.003
x4 16.852 6.800 0.108 2.478 0.015

表8

漯河试点建立的回归模型及回归系数

模型
Model
非标准系数Unstandardized coefficient 标准系数
Standardized coefficient
t P R R2
B 标准误差Standard error
4 常量 76.600 152.706 -1.278 0.212 0.962 0.925
x6 2.568 4.182 0.991 6.023 0.000
x13 2.356 0.304 0.197 2.193 0.037
x12 -83.437 25.156 -0.296 -3.451 0.002
x11 -16.202 6.126 -0.154 -2.412 0.023

表9

洛阳试点建立的回归模型及回归系数

模型
Model
非标准系数Unstandardized coefficient 标准系数
Standardized coefficient
t P R R2
B 标准误差Standard error
6 常量 -1211.546 143.002 -8.472 0.000 0.986 0.973
x6 22.264 2.151 0.541 10.350 0.000
x1 15.997 2.150 0.458 7.441 0.000
x5 43.133 7.579 0.332 5.691 0.000
x11 21.713 5.507 0.157 3.943 0.001
x4 -104.706 41.767 -0.230 -2.507 0.019
x12 45.885 18.831 0.101 2.437 0.022

表10

安阳试点建立的回归模型及回归系数

模型
Model
非标准系数Unstandardized coefficient 标准系数
Standardized coefficient
t P R R2
B 标准误差Standard error
3 常量 -1633.504 162.686 -10.041 0.000 0.929 0.921
x4 279.961 52.047 0.454 5.379 0.000
x6 18.645 3.324 0.445 5.610 0.000
x1 14.410 4.253 0.197 3.388 0.000

图1

不同地点杂交种和自交系产量热图

表11

不同材料的高稳系数、水分胁迫指数和综合抗病指数

材料类型
Material type
名称
Name
HSC 排名
Ranking
遮阴水分胁迫指数
WSI of shading
排名
Ranking
干旱水分胁迫指数
WSI of drought
排名
Ranking
CDRI 排名
Ranking
杂交种Hybrid 宛玉231 0.986 1 0.703 18 0.025 8 1.0730 2
宛玉471 0.946 8 0.386 3 -0.081 3 1.0913 5
安玉109 0.935 14 0.455 10 0.079 12 2.2475 18
安玉909 0.950 6 0.528 15 0.062 11 1.7839 15
洛玉197 0.945 9 0.395 6 0.086 13 1.6656 13
洛玉199 0.944 10 0.493 14 0.147 15 1.6127 12
漯玉16 0.921 18 0.489 12 0.208 18 1.8845 16
漯玉18 0.933 15 0.443 9 0.181 17 1.4138 9
漯玉197 0.927 17 0.390 5 0.087 14 1.2212 7
郑单1868 0.977 2 0.232 2 -0.007 5 1.1762 6
郑单6095 0.952 5 0.493 13 -0.054 4 2.2416 17
郑单6122 0.938 12 0.429 8 -0.104 2 1.5238 11
郑单7137 0.947 7 0.487 11 0.044 10 1.2877 8
郑单7153 0.932 16 0.552 16 0.158 16 1.6720 14
郑单7167 0.939 11 0.414 7 -0.115 1 1.4286 10
郑单7168 0.955 4 0.389 4 0.017 7 0.9989 1
郑单7603 0.959 3 0.581 17 0.000 6 1.0730 3
郑单819 0.936 13 0.121 1 0.030 9 1.0730 4
平均值Mean 0.946 0.443 0.042 1.4700
自交系Inbred line A5855 0.933 9 0.116 3 -0.015 4 1.4434 3
A7648 0.943 6 0.792 15 0.113 11 2.2356 9
A7682 0.943 4 0.235 4 0.090 10 2.7067 13
L2258 0.858 15 0.491 8 0.165 14 2.4804 11
L2564 0.928 11 0.016 1 0.131 12 2.9141 14
L4653 0.955 1 0.698 13 0.062 8 2.2328 8
L5878 0.917 13 0.535 9 -0.119 1 1.2952 2
L753 0.916 14 0.749 14 -0.057 2 3.6169 15
自交系Inbred line LX201 0.947 3 0.111 2 0.006 5 1.8730 5
LX202 0.948 2 0.299 5 -0.041 3 1.4434 4
LX203 0.943 5 0.387 6 0.050 7 2.2434 10
郑71 0.917 12 0.673 11 0.194 15 2.5233 12
郑72 0.934 8 0.697 12 0.024 6 2.1876 7
郑493 0.930 10 0.405 7 0.164 13 1.9383 6
郑79 0.941 7 0.543 10 0.084 9 1.1915 1
平均值Mean 0.930 0.450 0.057 2.1550

图2

不同杂交种(a)和自交系(b)干旱、遮阴处理后的产量变化

表12

耐阴性和耐旱性相关的性状

指标
Index
耐阴性
Shade
tolerance
耐旱性
Drought
tolerance
脱水速率
Dehydration
rate
穿刺强度
Penetration
strength
综合抗病性
Comprehensive
disease resistance
耐阴性Shade tolerance 1.000
耐旱性Drought tolerance 0.169 1.000
脱水速率Dehydration rate 0.209 0.448** 1.000
穿刺强度Penetration strength 0.063 -0.061 0.422* 1.000
综合抗病性Comprehensive disease resistance 0.479** 0.032 -0.094 0.306 1.000
[1] 郑洪建, 董树亭, 王空军, 等. 生态因素对玉米品种产量影响及调控的研究. 作物学报, 2001, 27(6):862-868.
[2] 张兴端, 霍仕平, 李求文, 等. 海拔高度对武陵山区玉米品种生育期和产量的影响. 玉米科学, 2006, 14(3):99-101,106.
[3] 孟林, 刘新建, 邬定荣, 等. 华北平原夏玉米主要生育期对气候变化的响应. 中国农业气象, 2015, 36(4):375-382.
[4] 岳伟, 陈曦, 伍琼, 等. 气候变化对安徽省淮北地区夏玉米气象产量的影响. 长江流域资源与环境, 2021, 30(2):407-418.
[5] 刘立涛, 刘晓洁, 伦飞, 等. 全球气候变化下的中国粮食安全问题研究. 自然资源学报, 2018, 33(6):927-939.
doi: 10.31497/zrzyxb.20180436
[6] 王元东, 赵久然, 付修义, 等. 黄欧系玉米育种应用探索与分析. 植物遗传资源学报, 2020, 21(4):866-874.
[7] 郭学峰. 河南省主要气象灾害特征分析. 热带农业工程, 2019, 43(2):203-206.
[8] 崔丽曼. 河南省雷暴大风气候特征及近年变化趋势分析. 气象研究与应用, 2016, 37(3):33-37.
[9] 赵久然. 优良玉米自交系选育新方法. 玉米科学, 2005, 13(2):31-32.
[10] 王向鹏, 张如养, 宋伟, 等. 不同生态区多环境下优良玉米自交系的筛选研究. 北京农学院学报, 2017, 32(4):1-7.
[11] 韩登旭, 杨杰, 邵红雨, 等. 中国骨干玉米自交系抗旱性分析与评价. 西北植物学报, 2012, 32(8):1648-1653.
[12] 段鹏飞. 河南夏玉米主要病害发生特征及其与气候生态因素关系. 郑州:河南农业大学, 2010.
[13] 张镇涛, 杨晓光, 高继卿, 等. 气候变化背景下华北平原夏玉米适宜播期分析. 中国农业科学, 2018, 51(17):3258-3274.
doi: 10.3864/j.issn.0578-1752.2018.17.003
[14] 刘瑞显, 王友华, 陈兵林, 等. 花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响. 作物学报, 2008, 34(4):675-683.
[15] 宋小园, 朱仲元, 刘艳伟, 等. 通径分析在SPSS逐步线性回归中的实现. 干旱区研究, 2016, 33(1):108-113.
[16] 乔宏伟, 武月莲, 宋凤波, 等. 主要病害及倒伏对夏玉米产量影响的研究. 现代农业科学, 2009(2):100-101.
[17] 李言照, 东先旺, 刘光亮, 等. 光温因子对玉米产量及产量构成因素值的影响. 中国生态农业学报, 2002, 10(2):86-89.
[18] 赵向阳, 丛佳慧, 安志超, 等. 冀南夏玉米氮肥效率变异特征与高产限制因子解析. 中国生态农业学报, 2020, 28(3):365-374.
[19] 谭静, 陈洪梅, 韩学莉, 等. 玉米杂交种产量与产量构成因素的相关和通径分析. 华北农学报, 2009, 24(增2):155-158.
[20] 饶宝蓉, 林昇平, 邹荣春, 等. 玉米主要农艺性状的遗传变异、相关性和通径分析. 福建农业学报, 2013, 28(3):223-226.
[21] 鲁珊, 肖荷霞, 毛彩云, 等. 玉米杂交种主要农艺性状的相关和通径分析. 安徽农业科学, 2017, 45(21):26-27,58.
[22] 郝茹雪, 王健, 武宝悦, 等. 不同春玉米品种产量及其构成因素通径分析. 黑龙江农业科学, 2020(1):9-11.
[23] 陶志强, 陈源泉, 李超, 等. 华北低平原不同播种期春玉米的产量表现及其与气象因子的通径分析. 作物学报, 2013, 39(9):1628-1634.
[24] 王曼莉. 生态因素对玉米品种产量影响及调控的研究. 农业开发与装备, 2017(4):92,81.
[25] 李向岭. 生态因素对玉米产量性能的调控效应及其模型的构建. 沈阳:沈阳农业大学, 2011.
[26] 李言照, 东先旺, 刘光亮, 等. 光温因子对玉米产量及产量构成因素值的影响. 中国生态农业学报, 2002, 10(2):86-89.
[1] 温胜慧, 杨俊伟, 王洋, 李公建, 翁建峰, 段灿星, 贾鑫, 王建军. 玉米抗真菌病害基因挖掘与分子育种利用研究进展[J]. 作物杂志, 2023, (3): 1–11
[2] 常青, 李立军, 渠佳慧, 张艳丽, 韩冬雨, 赵鑫瑶. 土默川平原麦后复种饲用玉米‖油菜模式的增产优势及氮素利用效率[J]. 作物杂志, 2023, (3): 167–174
[3] 高沐甜, 邱冠杰, 朱通通, 李瑞莲, 邓敏, 罗红兵, 黄成. 玉米―大刍草渗入系群体的剑叶遗传基础解析[J]. 作物杂志, 2023, (3): 51–57
[4] 李忠南, 王越人, 马艺文, 相洋, 邬生辉, 曲海涛, 李福林, 张淑琴, 李光发. 基于玉米DH系分离群体叶鞘、花丝、花药与穗轴颜色性状的遗传分析[J]. 作物杂志, 2023, (3): 75–79
[5] 张盼盼, 李川, 张美微, 赵霞, 黄璐, 刘京宝, 乔江方. 氮肥减施下添加硝化抑制剂对夏玉米植株及土壤氮素积累分配及产量的影响[J]. 作物杂志, 2023, (2): 145–150
[6] 崔淑娜, 王晔, 卢雨晴, 潘金豹, 张秋芝. 玉米穗三叶与产量的相关和通径分析[J]. 作物杂志, 2023, (2): 201–206
[7] 孟亚轩, 姚旭航, 周宝元, 刘颖慧, 袁进成, 马玮, 赵明. 青贮玉米混合青贮研究进展[J]. 作物杂志, 2023, (2): 24–29
[8] 于永涛, 张楠, 谢利华, 李光玉, 刘建华, 李武, 李高科, 胡建广. 消费者在甜玉米种质食味品质鉴评中的偏好性初探[J]. 作物杂志, 2023, (1): 14–19
[9] 张东霞, 秦安振. 冬小麦-夏玉米作物蒸散量及其水热关系研究[J]. 作物杂志, 2022, (6): 145–151
[10] 乔江方, 张盼盼, 邵运辉, 刘京宝, 李川, 张美微, 黄璐. 不同种植密度和品种对夏玉米物质生产和产量构成的影响[J]. 作物杂志, 2022, (6): 186–192
[11] 郭欢乐, 汤彬, 李涵, 曹钟洋, 曾强, 刘良武, 陈志辉. 湖南省玉米地方品种表型性状综合评价及类群划分[J]. 作物杂志, 2022, (6): 33–41
[12] 续创业, 张建军, 周刚, 张铠鹏, 朱晓惠, 王甲玺, 党翼, 赵刚, 王磊, 李尚中, 樊廷录. 陇东旱塬密植高产机械粒收玉米新品种筛选与评价[J]. 作物杂志, 2022, (5): 104–110
[13] 李龙, 肖让, 张永玲. 氮磷钾配施对制种玉米产量及经济效益的影响[J]. 作物杂志, 2022, (5): 111–117
[14] 历艳璐, 王俊鹏, 于欣志, 魏宏磊, 陈麒宇, 赵洪祥, 徐晨, 边少锋, 张治安. 冷凉区不同地膜覆盖对玉米干物质和氮素积累与分配的影响[J]. 作物杂志, 2022, (5): 124–129
[15] 贾秀苹, 卯旭辉, 梁根生, 刘润萍, 刘风, 王兴珍. 向日葵抗盐碱生理生化机制与生长发育特性分析[J]. 作物杂志, 2022, (5): 146–152
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!